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Abstract

Bitcoin is becoming more and more influential as an alternative type
of money; the cryptocurrency advertises fast, decentralized, secure
payments, but what are the privacy risks? This thesis has the objective
of inferring as much information possible about Bitcoin addresses,
the pseudonyms of the system, finding the entities they belong to
(or not), by discovering related or unrelated addresses. We can then
indirectly estimate the privacy of its users; as the latter is provided
in Bitcoin via pseudonyms, we demonstrate how it is often possible
to find a big amount of related and, more importantly, unrelated
addresses, leading to a decrease in the provided pseudonymity level.
We analyse the information that can be passively extracted from the
communications and data stored in the network, proposing a way of
combining different knowledge coming from multiple sources. We
show how the advertised pseudonymity level coming from using
different and new Bitcoin addresses is much lower than expected,
since many addresses can be shown to be unrelated to each other. A
custom built client being run on multiple servers is used to collect
new, additional types of data, that allow for a more detailed and
precise view of the users participating in the Bitcoin system through
the assignment of transactions to connected peers. Timing analysis is
used to form a link between Bitcoin addresses and connected IPs with
their relative online time, thus offering new possibilities for identifying
related and unrelated addresses. We aggregate previously known and
new data collected about the network and its Bitcoin addresses in a
fully automatic way, reporting the needed computational resources and
obtained hiding set sizes describing the estimated privacy of different
addresses provided by the Bitcoin network.
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Chapter 1

Introduction

Since its introduction years ago, Bitcoin has seen a rapid increase in popular-
ity, quickly becoming the most popular and used cryptocurrency around the
world. The system ensures secure fast transactions in a decentralized peer-
to-peer network, where all information is publicly transferred and shared.
Transferring bitcoins is (as of now) considered secure, while privacy is en-
sured by the utilization by its users of multiple different addresses, used as
pseudonyms for sending and receiving money.

Due to its novelty, its raising global acceptance and increasing volume of
transferred money, Bitcoin is a very interesting subject for the IT commu-
nity, especially for discussions regarding the security and soundness of the
system. This thesis wants to be a compendium of the information currently
available about Bitcoin and its promised level of protection. It will focus
then on the data that external entities could extract by listening to the com-
munications in the network, on what can be inferred by combining all the
information together from different sources and on what this means for Bit-
coin users’ pseudonymity and privacy.

1.1 Related Work

Following Bitcoin’s growth, more and more papers and articles have been
written about the subject, since the system is relatively new. All litera-
ture consists of documents written and published during the last five years;
we concentrate in particular on texts dealing with the subject of privacy,
anonymity and security in the Bitcoin system.

The ideas at the base of Bitcoin have been originally published in the paper
“Bitcoin: A Peer-to-Peer Electronic Cash System” [Nak08], in 2008. The
system saw a rapid increase in number of users and academic interest after
few years, especially since the community assumed the development work.
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Introduction Related Work

In one of the first papers, “Bitcoin Gateway – A Peer-to-Peer Bitcoin Vault
and Payment Network” [Sye11], a proposal for a peer-to-peer system for
Bitcoin wallets and payments is made. The idea is to add an outer layer to
the whole network, to simplify the usage of the Bitcoin service for new users
and at the same time improve the security of the system.

In “Bitcoin: An Innovative Alternative Digital Currency” [Gri12] a review of
the status of Bitcoin is presented; the focus is on its effects on the economic
world and the consequences for money laws around the world. “Bitter to
Better – How to Make Bitcoin a Better Currency” [Bar12] presents a series of
problems found in the way Bitcoin works, followed by possible solutions and
improvements for the cryptocurrency’s situation. In the paper “On Bitcoin
and Red Balloons” [Bab12] the authors explain the problem of incentives
and competing entities which can be found in the Bitcoin system, proposing
modifications of the protocol that would ensure information propagation
through the Bitcoin network and all of its participating nodes.

The document “Can We Afford Integrity by Proof-of-Work? Scenarios In-
spired by the Bitcoin Currency” [Bec13] discusses the viability of the Proof
of Work system used in Bitcoin; it is shown if and how, in different situa-
tions, the system remains secure. The topic is further discussed in “Majority
Is Not Enough: Bitcoin Mining Is Vulnerable” [Eya13], where through cal-
culations it’s demonstrated how Bitcoin can be vulnerable to some types of
attacks where miners collude against the system; the authors show why the
mining system cannot be incentive compatible and how it can be exploited.
In “The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adver-
saries” [Kro13] the mining system is again analysed; Bitcoin is examined
as a consensus game and it’s argued that, to prevent certain attacks on the
currency, a completely decentralized system cannot possibly be maintained
in the future and has to be changed by making compromises.

The paper “Anonymity of Bitcoin Transactions – An Analysis of Mixing
Services” [Mös13] takes a look at mixing services and their security; it’s
shown how their real effect on privacy varies and how risky it is to use
such systems at present. In “Beware the Middleman: Empirical Analysis
of Bitcoin-Exchange Risk” [Moo13] the authors analyse the risks involved
in the usage of exchanges to switch between bitcoins and real currencies;
statistics are also presented about the security of multiple exchange services.

In “Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transac-
tion Network” [Kon13] the authors perform a thorough analysis of the trans-
actions and money moved in the Bitcoin system; statistics about addresses
and their utilization are presented, together with data regarding many dif-
ferent properties of the bitcoins circulating (and resting) in the network.

The document “Is Bitcoin a Decentralized Currency?” [Ger13] focuses on
the issue of complete decentralization in the Bitcoin system; it is shown
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Related Work Introduction

how some operations and decisions are taken by a restricted set of entities,
effectively controlling the system. Proposals are made to solve the current
issues and enhance the system to be more decentralized than it currently is.

“Zerocoin: Anonymous Distributed E-Cash from Bitcoin” [Mie13] presents
a series of promising improvements to Bitcoin’s protocol and system, deal-
ing with the insufficient privacy provided to users. It is shown how Bitcoin
doesn’t provide good anonymity guarantees to its users and can leak in-
formation about money and executed transactions, while proposing a new
currency (extension of Bitcoin) that provides advanced features in this re-
gard through the usage of new cryptographic primitives. With “Zerocash:
Decentralized Anonymous Payments from Bitcoin” [Ben14] the group of
persons who worked on Zerocoin shows the latest developments in the
project, which is now presented as a completely new alternative cryptocur-
rency (altcoin). Zerocash advertises strong anonymity features, with transac-
tions revealing neither inputs nor outputs nor the amounts of money being
transferred. In the paper “Hiding Transaction Amounts and Balances in
Bitcoin” [And14] the authors provide additional (alternative) improvements
for the original Zerocoin system; they improve its anonymity guarantees
by keeping information regarding money balances and transferred amounts
hidden and impossible to find by looking at public information.

“Increasing Anonymity in Bitcoin” [Sax14] proposes a new method aimed
at improving the users’ anonymity in the Bitcoin system. Through the intro-
duction of a new cryptographic primitive, the authors advertise the creation
of transactions which would no longer link input to output addresses, in-
creasing the anonymity degree and bringing additional advantages.

Several publications deal with the privacy of the users of the system, infor-
mation propagation through the network (plus related attacks), and analyses
about what’s possible to infer from data that is publicly available for every-
one. These topics are at the core of the research presented in this thesis; the
most relevant documents are here presented in order of time.

In “An Analysis of Anonymity in the Bitcoin System” [Rei11] the authors
try to map external information coming from the TCP/IP layer and web
scraping data to associate Bitcoin addresses to IP addresses; in addition
to that they try to follow interesting movements of money across multiple
transactions in history. The network of transactions and addresses is built
and analysed, in an effort to show the difficulty involved in relating and
grouping different addresses and de-anonymizing users.

“Evaluating User Privacy in Bitcoin” [And12] presents a metric for quantify-
ing privacy in the Bitcoin network and provides two new important heuris-
tics, which allow to automatically analyse public data from the blockchain
to relate and group addresses, forming information about entities and their
links. The success of behaviour-based clustering techniques involving the
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previously shown new methods is demonstrated through practical experi-
ments by simulating usage scenarios of the Bitcoin network.

In the document “Two Bitcoins at the Price of One? Double-Spending At-
tacks on Fast Payments in Bitcoin” [Kar12] the authors concentrate on fast
payments through Bitcoin, their weaknesses and possible attacks. An anal-
ysis of the behaviour of clients accepting unconfirmed transactions and of
message propagation is presented; it is shown how double-spending attacks
via fast conflicting transaction messages are possible through practical ex-
periments, possible solutions to the problem are proposed.

In the paper “A Fistful of Bitcoins: Characterizing Payments Among Men
With No Names” [Mei13] a series of improvements of the previous two
heuristics is proposed, together with new results of their application and
their implication for privacy. The authors use a mix of automatic tools and
manual tagging of data to build a detailed clustering method, leading to
a very accurate map of the relations between addresses and to extensive
statistics about the network, its users and their links with real-world entities.

“Have a Snack, Pay with Bitcoins” [Bam13] presents again the problem of
double-spending attacks in relation with fast payments and unconfirmed
transactions. Improvements of the protocol in these scenarios are proposed,
following an analysis of node communication through the bitcoin network.

In “Quantitative Analysis of the Full Bitcoin Transaction Graph” [Ron13]
it is shown how it’s possible to navigate the history and track movements
of money across addresses, finding interesting transaction patterns and re-
lations. The document focuses on the static analysis of data in the Bitcoin
blockchain, and demonstrates how easy it is to build a detailed log of exactly
where money arrived and went for specific entities.

The document “Structure and Anonymity of the Bitcoin Transaction Graph”
[Obe13] presents statistics about the amount and types of entities interacting
in the network, and gives more information regarding address usage over
time in relation to the automatic heuristics. An analysis of the relations
between different network parameters, entities and addresses is presented.

The paper “Information Propagation in the Bitcoin Network” [Dec13] analy-
ses in detail the broadcast and relay of blocks and transactions in the Bitcoin
network. Models and statistics about different times and behaviours are
presented, with proposals for increasing information propagation speed.

“The Bitcoin P2P Network” [Don14] gives statistics about clients and their
behaviour in the Bitcoin network; statistics about their online time, stability
and other related data are shown. A series of measurements about transac-
tion and block propagation times through the different nodes is given.
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“An Exploration of Bitcoin Anonymity” [Woo14] presents an accurate de-
scription of Bitcoin’s anonymity issues and a survey of the works about the
subject. Security problems and attacks are shown with their relative pro-
posed solutions, together also with possible privacy improvements.

Finally, the document “An Analysis of Anonymity in Bitcoin Using P2P
network Traffic” [Kos14] demonstrates that particularly rare patterns in the
timings of received message inside the network can lead to direct and very
probable associations of Bitcoin addresses to IP addresses. The authors ex-
plain how the different possible scenarios can be identified and categorized,
recognizing how this type of association can very negatively affect privacy.

1.2 Contribution and Goals

Bitcoin is not an anonymous system; every transaction is logged publicly, in-
dicating the amount of money being transferred, when it happened, and the
addresses involved. Bitcoin is known however to provide privacy through
the pseudonymity given by the multiple different addresses everyone is free
to create and use, masking the identities of the users in the network.

The goal of our work is to infer as much information as possible about
observed addresses, finding all possible related and unrelated addresses,
and building a map of these relations. We combine old and new analysis
techniques in order to reach our objective and find associations between
addresses and entities. We present estimates of the pseudonymity level pro-
vided by Bitcoin, given by the number of addresses an address can “hide”
into. In an optimal scenario this number should be equal to all the existing
pseudonyms, while here it is lower, signifying a decrease in privacy. We
define the set of addresses in which an address can hide, its “hiding set”;
the observed addresses outside the set are the ones for which we are able
to demonstrate to be unrelated to said address. The privacy of each user
is given by the fact that no one should be able to infer anything about ad-
dresses’ related/unrelated addresses; for Bitcoin we see this is not the case.

All the previous research we know of has been focused on finding related
addresses; the objective was to form as many relations as possible between
them and to group addresses into big entities, which could then in some
cases be identified and linked to real-world users. With this work we want
to utilize this knowledge about related addresses, but merge it together with
something new: information about unrelated addresses. Thanks to this new
view on the links between all bitcoin pseudonyms we make it possible to
estimate the hiding set sizes for different addresses in multiple situations.

In addition to simply collecting and reporting available information about
Bitcoin and its security and privacy features, our work utilizes various con-
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cepts taken from the previously mentioned publications as well as new ideas
about how to obtain new insights on the privacy level of the system’s users.

We propose a completely automatic analysis system which is capable of
combining results coming from multiple heuristics, generating information
about the relations between different Bitcoin addresses. In addition to the
already known methods to obtain related addresses from publicly available
data, we exploit newly found sources of information to also be able to say
when addresses are unrelated to each other. We describe a new way of
obtaining data about transactions and their association with real-world en-
tities, through a timing analysis of messages received from thousands of
peers in the network. By associating transfers of money with IPs, a new
series of heuristics is presented, capable of bringing additional information
about both related and unrelated bitcoin addresses, and allowing for a more
accurate and in-depth analysis of the available data. The association of trans-
actions to online nodes could be used in the future for focused attacks on
users and could lead to additional privacy risks.

Multiple experiments are run on different data and periods of time; we
show the results of our analysis software, given as sizes of the hiding set
for sampled addresses. We use the hiding set, the group of addresses in
which the sampled address can hide as we don’t know if it’s unrelated to
them, as measure of privacy (or better, pseudonymity) of the Bitcoin system.
We show how, given a certain analysed period where new bitcoin addresses
are observed, users have in many cases reduced privacy, due to many other
addresses being demonstrated to be unrelated to the observed addresses.

1.3 Structure

The thesis begins with a small theoretical introduction to some concepts of
economics and cryptography in chapter 2. Chapter 3 contains a detailed
description of the Bitcoin system, its components, features and provided
privacy/security will be discussed. Chapter 4 instead presents alternative
cryptocurrencies that extend Bitcoin or were created from it.

The document continues in chapter 5 with a description of the infrastructure,
hardware and software used to perform analyses on the Bitcoin network.
Chapter 6 takes a look into our theories, why it is possible to associate
transactions to IP addresses, which information we use and how everything
is combined together to form the results; the latter are presented with the
relative performed experiments in chapter 7.

The thesis ends with a conclusion in chapter 8, looking at proposals for
improvements of the Bitcoin protocol regarding privacy, additional possible
work that can be done on the subject, and the future of Bitcoin.
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Chapter 2

Theoretical Background

2.1 Economics

What is considered to be money? “Money is any object or record that is
generally accepted as payment for goods and services and repayment of
debts in a given socio-economic context or country.” [1]. Originally money
was created as representation of a tangible resource for which it could be
exchanged, it was made of a precious or rare material that gave it intrinsic
value; in order to make more money, one would have to find and use more
of the said material. Nowadays however most, if not all, of the money in
the world is so called “fiat currency”, meaning that its value is not given by
the material with which it is made, but instead given by a (central) authority,
which decides how much a unit of the currency is worth.

Digital currency is a form of money which is created, stored and used exclu-
sively electronically; this is usually done via computer networks, the Inter-
net and digital storage mediums. A big part of modern money is stored and
used digitally: the digital representation of real money used by banks all
around the world. Cryptocurrencies (like Bitcoin) are a subset of digital cur-
rency; they rely on cryptography to implement a secure, peer-to-peer, decen-
tralized money exchange system [Ger13]. Digital money can be exchanged
for real physical goods, services, or money by the people or organizations
that support this type of transactions.

To be considered money [2], an object must have these basic functions:

• Medium of exchange – It can be used as intermediary in a trade of
goods, to avoid the inconveniences of a barter system.

• Store of value – It can be saved, stored and retrieved at a later time,
with predictable future usefulness depending on its value.

• Unit of account – It can be used as a (standard) monetary unit to
measure the cost or value of goods, assets or services.

7
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In addition to that, money should also have the following characteristics:

• Acceptability – It is widely accepted as a method of payment.

• Divisibility – It can easily be divided into smaller denominations.

• Durability – It must be durable and not break or ruin during use.

• Limited supply – There must be a limited supply of it.

• Portability – It must be easy to carry around and use for transactions.

• Uniformity – All versions of a denomination have the same value.

Cryptocurrencies possess all the functions and characteristics specified be-
fore;1 with a noticeable advantage over physical currencies in the divisibil-
ity, durability and portability areas. Bitcoin, as the main representative of
cryptocurrency, can thus for all intents and purposes be considered money.
This type of money cannot be regulated [3], improves on the current credit
card payment system for privates [4], and offers solid advantages that could
make it the next step to the future for the world economy [5] [6] [Gri12].

2.2 Cryptography

Cryptography, as the name implies, is one of the fundamental building
blocks of cryptocurrencies. More precisely, cryptocurrencies try to incor-
porate principles and constructs of cryptography in order to provide the
seemingly impossible service of worldwide decentralized money creation,
storage and exchange. Bitcoin uses four main ideas/algorithms/functions
taken from the cryptography world, which are resumed in the following
sections in order to better understand the internals of the system.

2.2.1 Hash

A hash is the value resulting from the application of a hashing function to
an input; this special family of functions is used to produce a fixed-length
output that depends from the given data of arbitrary length. In the context
of cryptography we need to use (cryptographic) hashing functions that, in
addition to being easy to compute, also respect a certain set of properties:

• Pre-image resistance – Given only a hash, it is very hard to find any
input data that would produce said hash (one-way function).

• Second pre-image resistance – Given an input, it is very hard to find
a another different input which, once given to the hashing function,
would result in the same hash result as the first one.

1 The only debatable exception could be “acceptability”: more and more entities accept this
type of currency (especially Bitcoin), however it is not of course accepted in all places and
for all purposes, since world-wide acceptance is not (yet) possible.
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• Collision resistance – It is very hard to find two different inputs which,
once given to the hashing function, would produce the same hash.

Hashes are used in Merkle trees (2.2.2) and digital signatures (2.2.3), in
addition to this, Bitcoin also uses them in the vast majority of transactions to
refer to destination addresses (3.1.1). Due to the previous three properties, a
cryptographic hashing function thus also intrinsically has the characteristic
that even the slightest change in the input would result in a completely
different hash result; this is used in Bitcoin’s Proof of Work (3.1.4).

The specific hash functions used by Bitcoin are SHA-256 [NIS01] for most of
the functions in the whole system, and RIPEMD-160 [Dob96] (in combination
with the previous) specifically for the encoding of output addresses.

2.2.2 Merkle Tree

Merkle trees [Mer79] (also called hash trees), are special tree structures used
to efficiently store and verify hashes of objects. Each node is a hash of its
children nodes, the data to be inserted (and in future checked) is passed to
a hash function and its hashes are then appended as leaves in the tree, the
parent nodes are then recursively updated by re-hashing. Thanks to this
structure it is possible to verify the presence of a certain object in the tree
by calculating its hash and comparing it only to a small part of the node
hashes: the logarithm of the total node in the tree; it is also possible to only
verify parts belonging to only a branch of the structure.

Merkle trees are used in Bitcoin for the storage and verification of the pres-
ence of transactions inside blocks (3.1.4) in the blockchain.

2.2.3 Digital Signature

A digital signature is a mathematical scheme that describes how to sign and
verify arbitrary data through asymmetric cryptography,2 in order to provide
authentication, integrity, and/or non-repudiation.

A digital signature system consists of key generation, signing, and verifi-
cation algorithms. In the first, through different mathematical properties
depending on the scheme, it is possible to generate a pair of related keys,
private and public, where the first can be used for signing, and the second
can be used to verify the signature; the private key must be kept secret while
the public one can be distributed freely. In the second algorithm input data
to be signed is provided, this is usually hashed and then, together with the
private key, used to generate a signature for it, which simply consists in a se-
quence of bits. With the third algorithm, by having as input the data that is

2 In asymmetric cryptography, two different (related) keys are used to encrypt/decrypt or
sign/verify information, allowing for advanced protocols and situations.
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supposed to be signed and the signature, it is possible with the public key to
verify the correctness of the signature and thus authenticate the information.

Bitcoin uses one type of digital signature algorithm, defined in the next
section, for creating addresses (3.1.1) and signing transactions (3.1.3).

2.2.4 Elliptic Curve DSA

Elliptic Curve DSA (ECDSA ) [Joh01], is a variant of the Digital Signature
Algorithm (DSA ), described in the Digital Signature Standard [FIP13]. The
main difference between the two is that DSA exploits the discrete logarithm
problem [7], while ECDSA utilizes properties of elliptic curves over finite
fields [8] and thus exploits the elliptic curve discrete logarithm problem [9].
The resulting distinction between the two is that, at the same “level of secu-
rity”, ECDSA is slightly slower, but requires much smaller keys.

Bitcoin addresses (3.1.1) are actually public ECDSA keys; the properties of
authenticity, integrity and non-repudiation given by signatures are used to
ensure the correctness of transactions (3.1.3).
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Chapter 3

Bitcoin

Bitcoin is a digital, decentralized, peer-to-peer cryptocurrency, described
first in a paper published in 2008 [Nak08] under the pseudonym “Satoshi
Nakamoto”, the real person or group of people behind it is, as of now, still
unknown.1 At the time of writing, the currency has been officially scru-
tinized by several dozen of the biggest country governments around the
world and has generally been considered as a legal and accepted money ex-
change method; it’s being used by thousands of small to big merchants [10]
and is being exchanged by multiple organizations and companies from/to
many different real currencies [11].

Bitcoin has been introduced as an open-source software that allows peo-
ple utilizing the system to create, store and transfer virtual money online
between entities in a secure way. The code base is now supported and con-
stantly updated and further developed by the community [12]; the contrib-
utors and users of the system are mostly concentrated in the official Bitcoin
forums [13], wiki [14], Stack Exchange Q&A [15] and IRC Channel [16].

The cryptocurrency uses as basic units bitcoins (lowercase), often abbreviated
as BTC or B, while the smallest (arbitrarily chosen) denomination is called
satoshi: one satoshi is 10−8 bitcoins, or one bitcoin can be seen as 100 million
satoshis. Bitcoin uses several cryptographic constructs to ensure the safety of
one’s money, irreversibility and verifiability of transactions, and regulated
currency creation in a decentralized heterogeneous network; it has to be
noted that the system does not include any encryption mechanism: all trans-
actions, with their address pseudonyms, are public and can be observed by
everyone [17] [18] [19].

1 It is interesting to note that it is believed this person (or group) possesses a very big amount
of bitcoins (roughly one million), due to their initial, almost exclusive, involvement.
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The latest statistics show how the number of publicly known and accessible
users (nodes) active in the network at any point in time is around 10′000 [20],
with many more (behaving differently, only actively connecting to others
when needed) estimated to exist.2 There are about 65′000 transactions being
executed per day and the current bitcoin exchange rate of 1 bitcoin for 625$
is accompanied by a daily estimated transaction volume of around 200′000
bitcoins, or 125 million dollars [18] [19] [21]. The Bitcoin market capitaliza-
tion is at around 13 million bitcoins, or 7 billion dollars [22].

In the following sections, the different parts and ideas of Bitcoin will be
described (3.1) and put together (3.2) to demonstrate how the whole sys-
tem works. Simplified Payment Verification Bitcoin clients are explained (3.3);
aspects of security (3.4), anonymity and privacy (3.5), plus other possible
alternative usages of the deployed network and data will be explored (3.6).

3.1 Components

3.1.1 Address

A Bitcoin address is a pseudonym identifier that users utilize as source and/or
destination of bitcoins inside transactions; everyone can, offline and by them-
selves, create and keep as many addresses as wanted, with no initial nor
upkeep cost.3 Addresses have an always updated balance, publicly known
and stored in a world-shared unchangeable log called blockchain (3.1.4). Bit-
coins are not actually stored or sent, they are assigned to certain addresses
depending on transaction data (3.1.3), that says which addresses just lost or
gained a certain amount of bitcoins.

Addresses are derived from ECDSA key pairs (2.2.4): the private key is not
disclosed, but kept in order to sign transactions utilizing the address as
input, while the public key is used, in its original or hashed form, as the
address in respectively the input or output of a transaction.

Frequently, to display an address in human readable form to receive dona-
tions or payments, the bytes composing the address are encoded using the
custom Base58Check transformation. This encoding takes the raw hash of
the public key data, the network for which the address is used (3.1.5) and
a calculated checksum; it then converts everything to a string by assigning
a lowercase letter, uppercase letter, or number, with the exclusion of the ‘O’,
‘0’, ‘I’, ‘l’ characters to avoid confusion due to similar looking strings. An
example would be: 1LoreWx4pwKFpRiqf1HMSMyXL2EhYwz6hS.

2 Custom clients or any software on mobile hardware can behave this way.
3 Addresses are created via a “simple” mathematical operation that can quickly be performed

on any hardware/software combination, and don’t require any form of maintenance.
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3.1.2 Wallet

The user keeps and creates all the owned addresses in a structure called a
wallet, which can be a local or web application responsible for their manage-
ment, association with private keys and use in transactions (3.1.3).

The wallet sums all the owned addresses’ balance to know the current total
owned bitcoins,4 decides which addresses to combine and use as inputs in
a transaction to reach the wanted output, and is responsible for the creation
of change addresses. It displays data related to the user’s owned assets in a
way that is easy to understand and interact with.

Change addresses are new addresses often created when doing a bitcoin
transfer: since when doing a transaction all of the balances present at that
time in the inputs must be used, when the sum of balances is greater than
the money needed for the operation, a new address is created and used as
additional output, to transfer the remaining sum back to the sender.

Wallets can be seen as a weak link in the Bitcoin system: bitcoins can be
stolen by discovering the private keys associated with addresses, users often
don’t fully understand the need to protect wallet or address data and are
frequently at risk. The addresses and relative private keys are often the
target of malware which tries to forcefully take bitcoins (3.4); while online
wallet services require absolute trust in the remote entity, which can’t offer
any guarantee about what will be done with the provided information.

Wallet programs are already available in different formats, with additional
features, supported platforms and security options; there is also a proposal
and development of a distributed peer-to-peer “payment network”, meant
to replace wallets with an easier to use system [Sye11].

3.1.3 Transaction

A transaction is a transfer of money (bitcoins) from a set of input addresses
to a set of output addresses; transactions are publicly announced, broad-
casted and relayed through the Bitcoin network to be then included into
blocks to form a log history (3.1.4). The balance of the inputs is completely
cleared, while for each of the outputs it is specified how much of the total
amount is to be transferred; what remains from the total available sum after
having removed all the output values is the transaction fee, which is given as
incentive to miners to include the transaction in the block chain (see the next
section for more details about the block inclusion procedure).

4 By looking at all the publicly known history of transactions related to them.
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The input part of the transaction is a series of entries of variable length
(at least one): each entry is made of a reference to a previous transaction
through a hash, the index of one output, and the public key form of the
address together with a signature made with the related private key. What
this means is that, for each input address we use, we refer to the balance
contained in it when it was used as output in a previous transaction,5 and
provide a signature over the currently made transaction with the address’
private key to prove the fact that we own the address. A transaction is called
an “orphan” when it mentions in at least one input a previous transaction
which cannot be found in the blockchain, it is then kept in a special waiting
queue by the clients receiving it, awaiting the missing referred transaction(s).

The output section consists of another series of entries: each one is made
of a numeric value, telling how many satoshis are to be transferred to that
output, and an address, which is usually given as an hash of the public
ECDSA key (known by the sender through any channel the receiving entity
decided to use to advertise the address). As previously explained, the output
list commonly contains an address forged specifically to send the “change”
money back to the source user of the transaction, as a consequence of the
necessary complete usage of the input addresses’ balance and sum needed
to be sent to the other outputs.

Figure 3.1: Simplified view of the relations between Bitcoin transactions.

5 The same input address can thus appear multiple times (in the same or multiple transac-
tions), each time utilizing the bitcoins gained in a different previous transaction.
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Figure 3.1 shows a simple diagram of what the inputs and outputs for a
transaction C look like. It can be observed how the inputs refer to previ-
ous transactions and are used to collect money to be sent to selected out-
puts. Not displayed here are the signatures provided by whoever created
the transaction in order to make it valid: for each input, a signature on data
about the previous and the current transaction must be provided through
the private key of the address mentioned in the input.

Bitcoins are generated and assigned to selected output addresses through
special coinbase transactions (explained in more detail in the next section),
which contain a single specially crafted input that doesn’t refer to any previ-
ous transaction and transfers a fixed amount of bitcoins.

It has to be noted that in the previous explanation of the transaction struc-
ture a simplification has been made: the vast majority of transactions uses
normal addresses as outputs and signatures for input verification as spec-
ified; Bitcoin however defines a whole custom scripting language “Script”
that allows for more complex conditions for input and output usage [23].

3.1.4 Block

Blocks are used to store transactions plus additional metadata, every block
stores new transactions not stored in any previous block and together they
work as a public log or ledger of bitcoin transfers from address to address.
Each block holds a reference to the hash of the previous block, up to the
first hard-coded genesis block, thus forming what is called a block chain: a
(generally) unchangeable common transaction history agreed upon by the
Bitcoin system participants.

The most important data stored in the block is the full transaction list and
the block header, which in turn is composed of:

• Version number

• Hash of the previous block

• Root of the Merkle tree of transactions

• Timestamp

• Nonce value

• Target value (difficulty)

In figure 3.2 we can see a dimple diagram of the main components of blocks,
what data they contain and how they are linked to each other. Note that
blocks must contain a minimum of one transaction (coinbase).
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Figure 3.2: Simplified view of the data that can be found inside blocks.

The main block chain, the one that every node in the Bitcoin network should
know, refer and append to, is defined to be the chain of blocks with the high-
est total sum of difficulty, and is also called the “longest”. Blocks received
by clients in the Bitcoin network that miss at least a predecessor that links
them to the current blockchain are called “orphan” and are ignored until
the missing blocks are elaborated. It is possible that at certain points in
time the current chain branches (“forks”) due to simultaneous discoveries,
network topology and link delays. This situation however typically resolves
by itself once a new block is found and appended to one of the branches,
making it the new main and official chain, which merges any transaction
only included in the other old branch. An analysis of the forking problem
and possible improvements can be seen in [Dec13].

Miners work on the latest block of the main chain, immediately broadcast-
ing to the entire Bitcoin network any new block they found that is a correct
solution to the Proof of Work (PoW), making so that it gets appended, increas-
ing the length of the chain and providing a proof of validity for the latest
included transactions and the bitcoin transfers mentioned in them.6

Figure 3.3 presents a view of a possible section of the blockchain. The main
chain is shown in green, small forks like the one displayed in violet can
happen relatively frequently, while extended forks like the one shown in
orange are much rarer. The main chain is the line of blocks with the highest
total difficulty and its last block is referred to by miners who are working
on new blocks that will extend the blockchain.

6 The validity or “confirmation amount” of transactions increase as more and more blocks
are appended to the chain following the logging of the transactions.
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Figure 3.3: Possible section of the blockchain, displaying relations between blocks and forks.

Mining

Starting from the initial genesis block, new blocks can be found and added to
the current chain by anyone that participates in the so called mining process:
the discovery of new blocks that contain a correct solution to the Proof of
Work system. The Proof of Work function is meant to ensure that the entities
proposing new blocks have done some work in order to be able to propose
it: they have found a solution, and thus spent computing power and time
towards the current PoW problem which has a certain difficulty. It is hard
to find a correct answer to the current problem, but very easy and fast to
verify the correctness of a solution.

The difficulty of the problem is represented by the Target value stored in the
block, it is adjusted dynamically so that the discovery of new blocks remains
as constant as possible in time despite the varying number of entities and
machine speeds; the objective for Bitcoin is the creation of one new block
every ten minutes on average.

Miners receive a reward for their computational effort in case of success
and the discovery of a new valid block. This block must contain any new
transaction that the entity chooses to include; as a reward for their work,
any fee contained in the included transactions, plus a fixed initial amount
of bitcoins, is given to a set of output address chosen by the block creator
in the custom created coinbase transaction. This special single transaction
can only be written by the author of the new block, it creates new bitcoins
by specifying a single all-zero input address which sends a fixed amount of
satoshis to the listed outputs.

The fixed reward for the creation of new block is set to slowly decline over
time for Bitcoin, until zero is reached. However after that happens blocks
will keep being mined and appended to the block chain indefinitely in or-
der to provide transaction history and verification, the reward for the min-
ers will at that point only be composed by fees given by the transactions
included in the block.
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The Bitcoin protocol is incentive-compatible: it encourages miners to follow
the commonly defined rules in order to gain the greatest possible benefit
for their efforts; the system is also protected against a minority of colluding
entities. Miners should announce all their newly discovered blocks immedi-
ately to everyone and only work on the main block chain, they should not
work in private on their own “private fork” of the chain or the system could
become compromised if the computing power is high enough, they should
also relay all the received transactions.

While Bitcoin is currently considered safe from a certain amount of selfish
entities, there are discussions on the information propagation problem in
the network [Bab12], analyses are also being conducted about the resistance
of the system and possible improvements and modifications for facing this
type of menaces [Eya13] [Kro13].

Proof of Work

The Bitcoin Proof of Work system is based on hashing “randomness”: the
property of cryptographic hashes for which it is difficult (impossible) to
predict what output an input will produce until it is tried, related to the fact
that a small change in the input greatly affects the output. The challenge
of the PoW specifies that the SHA-256 hash (2.2.1) of the newly created
block, calculated on the block header data, must be under a certain value,
depending on the difficulty; this can also be seen as producing a hash value
beginning with a certain amount of zeros, defined by the Target value stored
in the block. The difficulty is a globally known value, set to increase over
time, calculated by the Bitcoin client.

Miners continuously try to create a block with a new different hash by
adding more and more transactions (or modifying the coinbase transaction),
thus modifying the Merkle tree root (2.2.2), updating the Timestamp, and try-
ing different Nonce values. As soon as a new valid block is found, it is broad-
casted through the Bitcoin network; everyone, once the validity is checked,
relays and appends it to their current block chain, all the miners then start
working to add another block after the newly found one. The probability of
finding a new correct solution is directly proportional to the utilized compu-
tational resources, due to the system being a bruteforce random generation
and check of hashes.7

7 There is no known algorithm for predicting the results of a (secure) hash, quicker than
executing the hash itself. Faster machines thus simply can try more random hashes in the
same amount of time, thus increasing the probability of finding a valid one for the PoW.
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Proof of Work ensures that the “majority” of the system, that basically de-
cides which is the correct public log of transaction (block chain), is given by
the majority of computing power. An evil entity would need to possess more
computing power than the sum of all the honest entities combined together
in order to be able to control the block chain and modify previously stored
data. Transactions which are added to a new, valid block in the chain are
considered “confirmed”, or with 1 confirmation; each block produced and
appended afterwards to the chain counts as an additional confirmation for
the transaction. As more blocks are added, it gets exponentially more diffi-
cult for an adversary with less computational power than the whole honest
part of miners taken together, to modify previously logged transactions.

There are some doubts regarding the general efficiency of Bitcoin’s Proof
of Work system and how well it could work in different scenarios [Bec13];
the main recognized problems are the waste of energy, the insecurity due
to entities with very high computing power (intrinsic to a PoW system)
and the rise of specialized hardware (FPGA, ASIC) for fast hash calculation
due to the SHA-256 algorithm used. There is also a future possible onset
of a Tragedy of the Commons: a market failure scenario where something is
consumed more than wanted or produced less than wanted; in the Bitcoin
world this could be due to the ever-decreasing rewards for block mining.

Proposed solutions, to be used by themselves or in conjunction with Bit-
coin’s Proof of Work, are Proof of Stake [24], where entities are the “majority”
when they own the bigger part of the total amount of money in the sys-
tem; and Proof of Burn [25], where miners show proof of having virtually
consumed currency as a way to demonstrate work done. There are also al-
ternatives to the specific hashing function used by Bitcoin, built to prevent
entities from developing specialized hardware or exploit GPUs for faster par-
allel processing, an example of such alternative functions is SCRYPT [Per12],
a key derivation function meant to be intentionally slow and very difficult
and costly to execute on custom or parallel hardware, due to the extremely
high memory requirements. Practical uses of these alternative methods will
be shown in chapter 4, where alternative cryptocurrencies branched from
Bitcoin are presented and analysed.

3.1.5 Network

The Bitcoin system works thanks to clients communicating between each
other in a decentralized (or distributed) Peer-to-Peer network [26]; the clients
of the online system are called nodes. Any device running a Bitcoin client ap-
plication is automatically connected to the network, where it sends/receives
messages via TCP to/from a limited number of connected peers, following
the defined protocol rules [27] and specifications [28].8

8 Nothing prevents however running a custom clients that only follows some of the rules and
behaves differently from the other participants depending on the situation.
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Bitcoin’s main (and most known) network is called mainnet, it is in opposi-
tion to testnet, a parallel network which utilizes virtually the same protocol,
but has a different block chain and utilizes different default ports for com-
munication. Testnet bitcoins have no value (or at least, they are not intended
as a currency): they can very easily be created and exchanged, available to
whoever needs them. The network is used as a kind of public testing plat-
form, where everyone can experiment with new or modified clients without
affecting the real Bitcoin system.

Nodes connected to the network have several different ways to discover and
connect to new peers [29], these methods can be used by the client when it
connects for the first time, or regularly to maintain a list of possible nodes
to connect to. Besides manually provided IP addresses, a node can get an
initial list of nodes to connect to from special DNS requests to a series of
hostnames written in the code of the client; as last resource it is always also
possible to reach a limited group of fixed nodes hardcoded in the software.
Once communicating with several peers, the client keeps an updated list of
reachable addresses, which are then exchanged through various messages
in the whole network in order for everyone to discover new clients.

A node can react differently to incoming messages and send several out-
going messages depending on the running client software. As the Bitcoin
network is public and the minimal protocol requirements are very simple,
many custom client programs exist that have different purposes in the sys-
tem. Nodes differ in how they connect and react to other peers: depending
on the local network and on the software, a node can be set to only actively
create new connections, to only connect when needed, to (not) relay/broad-
cast certain messages, and/or to only communicate with a restricted or se-
lected amount of other nodes during their online time.

A so called ”full” node is a client connected to the network which is partic-
ularly useful for all the connected peers, the usefulness is given by the fact
that such a node accepts incoming connections, supports many connected
peers, tries to connect to many nodes, and provides updated verified transac-
tions and blocks, which are always punctually relayed through the network.
Other nodes could simply passively listen to the communications, or only
relay some information, depending on the running software.

Any client connected to the network can be a miner (3.1.4), even though
usually the computers performing the expensive mining operations are not
directly connected in order to save computing power, and instead use a
proxy node to interface with the net. It is very important for a miner to be
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very well connected to many peers, in order to receive new transactions to
include in the block and, more importantly, to quickly receive and transmit
newly mined blocks.9

Most miners organize in groups and form what are called mining pools: in
such pools the work of finding a new block is split between all the partici-
pating users; when a new block is found by the group, its reward is split,
usually depending on the amount of work contributed in the PoW tries for
the block. Pools usually posses one or more nodes responsible for the man-
agement of the workload and the receipt of updated data.

3.1.6 Communication Protocol

Each peer in the Bitcoin network communicates with each other through
a specific restricted set of messages. When a new connection is created
between two nodes, the protocol dictates that the actively connecting peer
sends a version message, specifying identity details and various supported
versions of protocols, this is then followed by an acknowledgement by the
receiving party; the procedure is then repeated in reverse. After this initial
handshake, any message can be exchanged between the nodes, until one
of them disconnects, a timeout is reached in the connection, or a peer gets
temporarily banned by the other for misbehaving (for instance due to a
denial of service attack or too many malformed messages).

We will now describe the most important message types that can be sent and
received. For more details, the official wiki contains a thorough definition
of all messages and their included data in the Bitcoin protocol [28].

• version: Advertises client name and version, list of supported features,
protocol version and additional information. It is sent from two com-
municating nodes to ensure they exchange comprehensible messages.

• verack: Signals that a peer received and accepted the other node’s just
received version message, sent as answer right after it.

• getaddr: Requests a peer for any recently active node it knows of,
used for network discovery, to keep a list of known possible peers and
connect to new entities now or in the future.

• addr: Lists a certain amount of known active peers which can then be
accessed by other nodes in the network. Sent as answer to a getaddr
message or at any moment to random connected nodes, in order to
ensure an update knowledge of reachable nodes to the entire network.

9 Working on a blockchain which is not updated and not knowing which block is the current
latest one results in wasted work due to the production of unacceptable solutions.
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• inv: Standing for “inventory”, this message is sent to all connected
peers whenever the node creates, or receives and validates a new trans-
action or block. It contains a hash of the advertised new object, which
the receiving peers then decide to request if needed/wanted.

• getdata: Requests for an entire object (transaction or block) to be trans-
mitted, by providing a hash to identify it. Usually sent right after
receiving an inv message for something the node didn’t already know
about, in order to receive and process it.

• tx: Message representing an entire transaction object, sent as answer
for a getdata request, asking for the identifying hash.

• block: Message representing an entire block object, sent as answer for
a getdata request, asking for the identifying hash.

• ping/pong: A ping message contains a nonce, when sent to a peer it
will respond with a corresponding pong message. Used automatically
or manually to check if a connection is still valid and active.

3.1.7 Client

The software used to connect to the Bitcoin network and interact with other
peers can be called “Standard Client”, “Satoshi Client” or simply “Bitcoin”;
recently, to avoid confusion, it has been re-branded to “Bitcoin Core”.10

The original program was released together with the initial paper by the cre-
ator Satoshi under an open source license,11 the community took the project
and is now continuously reviewing and updating it. Users can download
pre-compiled binaries for Windows, Linux, or Mac OS; the source code is
freely available on the official Github page of the Bitcoin project [12]. As the
network and the reference code are easily accessible, multiple branches of
the Bitcoin Core project are available to use, with various modifications and
added functionalities; versions of the software in different programming lan-
guages can also be found.

The original client is written in C++ and is composed of two main parts.
The base is a standalone server, connecting to the network and accepting
command-line commands or JSON-RPC [30] calls to execute actions and ac-
tively send user-requested messages to the connected peers. The software
also contains an optional standard wallet, built with Qt [31], interacting
with the server and providing an easy to use graphical interface.

10 Bitcoin release notes: https://bitcoin.org/en/release/v0.9.0.
11 MIT License: http://opensource.org/licenses/MIT.
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3.2 How Everything Works Together

We will now have a look and summarize in a simplified and concise way how
all the previously explained components work together in order to provide
all the Bitcoin cryptocurrency services.

Everyone can generate new Bitcoin addresses and can use as many as wanted,
bitcoins actually only exist assigned as balance to an address. Money is
transferred from one address to the other through transactions: an operation
moving bitcoins from a series of inputs to a series of output addresses (plus
optional fees). A transaction can be made only by the person possessing the
input addresses, only they can sign the transaction, but everyone can then
verify its correctness. After the transfer of bitcoins, the input addresses are
emptied of all their bitcoins, which are then assigned to the chosen output
addresses. Every transaction input specifies an older transaction’s output
(the new input and the old output addresses are the same) to indicate the
amount of bitcoins that it contains and will be used for the transaction.

When a new transaction is generated, it is broadcasted publicly throughout
the Bitcoin network, each node verifies the validity of the transaction by
looking at the source of the bitcoins used as inputs before relaying or work-
ing on it. Miners are special nodes that work using computational power to
find a solution to a difficult Proof of Work, trying to include any transaction
they receive in order to then gain as a result its fees. They continuously
try to generate a new block, containing all new transactions since the last
block, to be appended to the existing block chain; if they succeed, they gain
a fixed amount of bitcoins plus any fee contained in the included transaction.
The blockchain acts as a public ledger of all transactions in history; as the
blockchain is unique for all the Bitcoin participants and requires work for
each block to be added, altering previous data becomes increasingly hard
the more time passes.

Every peer in the network always keeps its block chain updated (for it to be
the same as everyone else’s), relays its own or others’ transactions and blocks
to all its neighbours, and verifies the correctness of data before doing so. All
the nodes continuously exchange information about other reachable entities
and don’t relay on any central authority, forming a peer-to-peer network
used to exchange bitcoins safely, on the base of the security of the underlying
cryptographic primitives, protocols and publicly known information.

3.3 Simplified Payment Verification

Every node in the network should posses the full block chain; this is needed
for transaction verification, required whenever information coming from a
peer must be relayed to other peers, and to also to know if bitcoins sent or
received in own transactions have been accepted and recorded by the peers.
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The block chain naturally grows bigger and bigger with time; as it must
contain all the transactions in the history of Bitcoin, it also is of considerable
size.12 This fact, united with the growing number of transactions being exe-
cuted every minute, would make it very hard (if not simply impossible) for
devices with limited storage and/or network capabilities to run the bitcoin
client and thus utilize the cryptocurrency.

Simplified Payment Verification (SPV), makes it possible to run what can be
seen as a ”partial” Bitcoin node: a client using it doesn’t need to download
and posses the entire block chain, and in exchange is slightly less secure and
cannot help its peers by relaying blocks or transactions.13

With SPV the client maintains exclusively the headers of the blocks in the
blockchain, and announces to its peers to only relay to it “relevant” trans-
actions, filtered by a special data structure transmitted at the beginning of
the communication. The headers only allow the node running the software
to verify that they indeed constitute a correct block chain (by verifying diffi-
culty length and chaining of hashes), and if a certain transaction is included
in a block (if provided together with a Merkle tree branch, linking it to
the block header). Simplified Payment Verification also saves more space
by only keeping a limited amount of block headers: the most recent ones
known, meaning the top part of the blockchain.

The advertisement of “relevant” transactions that a SPV client wants to re-
ceive happens through Bloom Filters [32], probabilistic space-efficient data
structures which test the presence of an element in a set with possible false-
positives but no false-negatives. The client sends to its peers a certain bloom
filter, containing the transactions it is interested in, the peers will then check
every transaction about to be relayed with the filter, transmitting it only if
it’s contained in the filter. A node running Simplified Payment Verification
can make a compromise between the rate of false-positives (uninteresting
transactions received) and the level of privacy (given by the implicitly adver-
tised “own” transactions due to the information included in the filter).

This way of participating in the Bitcoin system can be seen as somewhat
selfish, as it doesn’t help neighbouring nodes and “steals” resources; it is
however the only way to allow resource-limited devices to connect and use
Bitcoin. SPV clients are less secure, as they can’t completely verify a trans-
action validity by looking at the origin of its inputs; a transaction is deemed
valid depending on the sheer quantity of blocks in the chain after the block
containing it. Simplified Payment Verification depends on good, reliable
connected peers to ensure the correctness of received data.

12 At the time of writing, the blockchain has a size of around 18GB and is steadily growing
(Chart of the total size: https://blockchain.info/charts/blocks-size).

13 A SPV node only listens to any block/transaction received but doesn’t relay it.
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3.4 Security and Attacks

Bitcoin is currently generally considered secure, its underlying algorithms
for hashes, SHA-256 and RIPEMD-160 (2.2.1), and digital signatures, ECDSA
(2.2.3), have no known practical attack available and the research commu-
nity approve their usage for Bitcoin’s purposes. In the protocols used there
is no apparent major flaw that has been found, and as encryption is never
actually used in Bitcoin (all the data, except private keys, is public), there
are no other related problems to consider.

Bitcoin’s “51% attack” could be considered its main weakness; it stems from
the protocol’s absolute decentralization and dependence on a majority cal-
culated by raw given processing power. It’s the majority that in the long
run decides what gets accepted and included in the blockchain; if someone
(which could of course also be a group of people) has the majority of the
computing power and has malicious intents, they could craft arbitrary trans-
actions, spend the same bitcoins multiple times or prevent other legitimate
transfer from ever being accepted. Although this attack is possible and in re-
cent times an abstract entity even obtained (temporarily) the majority of the
computing power, its effect would be limited, as thanks to Bitcoin’s publicly
known data everyone would immediately notice something is wrong; the
debate is still on about the reality and effect of this issue [33]. Nonetheless,
additional schemes like Proof of Stake or Proof of Burn could complement
the basic Proof of Work system used in Bitcoin and are meant to provide
additional protection against this scenario.

Since the Bitcoin network is composed of pure peer-to-peer connections, a
completely new node (or one that was offline for a long time) selects at
random to which limited set of peers to connect as explained in section
3.1.5; all these nodes could be controlled by malicious entities. If a client is
connected exclusively to other evil nodes, it could receive any kind of crafted
data about blocks and transactions, and its request could be ignored and
never relayed. The possibility of this happening however, due to the number
of possible nodes, established connections, and limited communication with
nodes in the same subnet, is extremely remote.

Any full node in the network is publicly reachable through the Bitcoin pro-
tocol and can indiscriminately connect to any client that requests to do so,
sending messages following the protocol. A malicious entity could set up a
Denial of Service attack, exhausting the local resource of the target node by
rapidly sending large amounts of data or specially crafted information that
takes unusually long to process, thus preventing the node to communicate
with other peers and eventually crash. The Bitcoin client however has many
protections in place to protects against such attacks, from data rate limiters
to a list of temporarily banned nodes; as of now no efficient DoS attacks
have been found or observed in practice.

25



Bitcoin Security and Attacks

Network segmentation, resulting in two or more group of nodes commu-
nicating only within their separated subnetworks, could bring problems if
experienced for a long time due to the common blockchain log structure.
While the network is segmented, the different parts would add new blocks
and transaction to their “local” blockchain, which grows from the common
base known before the network split. When the segmentation ceases to exist,
we would have two or more different branches of the blockchain whose in-
formation must be merged together in one single chain. If the segmentation
lasted long enough, transactions using outputs from old coinbase transac-
tion would have to be recursively discarded, possibly causing issues. Given
the great amount of nodes around the globe and the number of connections,
this scenario is again highly unlikely to ever happen.

Regarding transactions, the Bitcoin protocol as already explained in the pre-
vious sections requires that a transaction is confirmed multiple times by be-
ing included in the main blockchain before being accepted as “valid”. Since
however this procedure takes time (a block is generated on average every
10 minutes), in many situations entities who need to receive money in a
fast way can decide to accept a transaction before it is confirmed by any (or
only one) block. This opens up the system to a series of attacks known as
“double-spending”, where an attacker connected to the victim creates two
transactions spending the same inputs but giving them to a different output,
himself or the victim, depending on the transaction.

With the right conditions the attacker can then convince the target that they
received the money, while in reality eventually it will be the transaction
giving money back to the attacker the one that will be accepted and stored
in the main blockchain. The attack was first described in [Kar12], with more
variations being listed in the official wiki [34]. Again this is an attack which
is quite difficult to perform in practice, basically impossible if the receiver
follows the proposed Bitcoin usage recommendations [Bam13].

So far it would seem that the whole system is very secure, so why are there
so many news circulating about “lost” bitcoins and big heists all over the
world? A list of all the known big stories of Bitcoin criminality can be found
on the official forums [35] and can look daunting. As with many other
technologies however, the truth is that for all (or at least the vast majority)
of the presented problems the cause can be found not in the instrument,
Bitcoin, but in the people using it.

Many persons utilizing Bitcoin wallets don’t realize how they should protect
their data, private keys are lost or stolen, and with them the bitcoins the
unlock access to. Even if the protocol and system are completely secure,
if the users don’t keep their private information safe and fail to follow the
rules, nothing can be done. As we are talking about bits stored in computers
and other devices, another issue followed Bitcoin’s success: malware.

26



Anonymity and Privacy Bitcoin

Since the cryptocurrency’s initial usage diffusion there has been a worrying
increase in malicious software meant to steal local credentials, including
private Bitcoin keys, and to hijack computational resources to mine and
make money without the user knowing [36]. Users need to be aware of the
technology, its risks and how to be secure before risking losing money.

Another “human issue” is related to trust: too many Bitcoin users wrong-
fully trust blindly remote (web) entities providing exchange or wallet ser-
vices, with no guarantees [Moo13]. There is no way for a website to ensure
their service is legitimate and that its users don’t run any risk by not having
personal control of their data. Using web services inevitably leads to more
security risks: the most secure thing to do is to manage all information
related to Bitcoin by yourself, on your own devices.

Perhaps the most widely known news related to Bitcoin security was the fail-
ure of “Mt. Gox”, at the time the most active and used web exchange, which
resulted in bankruptcy and what until today remains the biggest amount of
bitcoins ever stolen by unknown entities. There are countless articles on
the web about the matter [37] [38]; resumed in a few words, it all revolved
around inexperience, ignoring information about how Bitcoin works, and
“transaction malleability” [39]. The wrong usage of data provided by the Bit-
coin system, in this case the transaction identifier, known to possibly change
for the same transaction, resulted in the catastrophic outcome. Transaction
malleability was something already known and not viewed as a security
problem, but as a feature of the system; however after what happened, to
avoid further issues due to people utilizing data in the wrong way, every-
thing was “patched” in the next Bitcoin version.

Bitcoin shares many features with real money, it can be harder or easier
to steal depending on the point of view and knowledge of the user. What
is sure however is that, while they might be taken via hacks, malware or
user misbehaviour, bitcoins can hardly be made disappear, with everyone
knowing about everything that’s happening in real time [40].

3.5 Anonymity and Privacy

One of Bitcoin’s big advantages over normal currencies is its completely
decentralized structure and independence from any kind of external entity,
it’s a system that works by itself thanks to the collaboration of its users.

A big misconception about the cryptocurrency is that it provides anonymity:
being able to make payments no one is able to trace and with no leftover
information. On the contrary, Bitcoin doesn’t provide this, being all transac-
tions public and known by everyone, with involved addresses and amounts;
it provides instead privacy in the form of pseudonyms.
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Bitcoin’s pseudonyms are the (public) addresses used to indicate who re-
ceives or sends money in transactions, each user of the system can create as
many addresses as needed and thus has at their disposition a theoretically
infinite amount of pseudonyms, thus guaranteeing a certain level of privacy.

Despite the use of pseudonyms it is possible, thanks to the publicly avail-
able transaction data, to perform many types of analyses revealing relations
between theoretically independent addresses and grouping information to
form entities. It has been shown how movements of money can be manually
tracked across the blockchain history through different transactions, linking
several different transactions and discovering transfer patterns [Ron13]. In-
formation coming from external sources like data coming from IPs or web
scraping can be combined with the data contained in the blockchain, to
discover additional relations between entities involved in transactions and
form maps [Rei11]. Statistics can be inferred about the amount and type
of entities interacting in the network, together with additional information
about the usage of addresses [Obe13]. By looking at address usage and
appearance in transactions over time, data about entities and their relation
can be automatically built utilizing precise heuristics [And12], this type of
analysis has also been further developed to include additional data sources
and obtain more precise results [Mei13] [Kos14].

In order to address the cryptocurrency users’ growing need of privacy over
time and to counter the many possible analyses on data coming from differ-
ent sources, various solutions have been proposed.

One improvement towards anonymity comes with the possibility of running
Bitcoin nodes through the Tor Network [41]; doing so doesn’t change any-
thing related to the address information that is stored in the blockchain,
but it helps avoiding the link of TCP/IP network information to blockchain
and network data. Utilizing the anonymity network brings however dis-
advantages like increased delays and possible network weaknesses due to
misbehaviours and limited availability of usable nodes.14 Nonetheless, this
possibility is planned to officially appear in one of the newer versions of
Bitcoin’s Java library used by most of the SPV clients, BitcoinJ.15

There has also been a big increase of mixing services for Bitcoin [42] [43] [44],
which (theoretically) provide stronger guarantees of untraceable transac-
tions by collecting bitcoins that need to be sent from multiple sources and
then executing multiple transactions towards the original recipients. While
the ideas and executions work, there’s an important problem of trust due
to Bitcoin’s system itself, as the money initially sent to the mixing service is

14 Given the limited shared exit nodes used by Tor, a single evil entity could quickly get all
of them temporarily banned on most of the nodes in the Bitcoin network by misbehaving.

15 BitcoinJ – Bitcoin Java implementation: http://bitcoinj.github.io.
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never guaranteed to eventually reach its destination in the case of a malevo-
lent service provider. Using such mixers also means incurring in additional
fees for every transfer, as multiple transactions are needed for the service to
work; plus longer delays for the transfer of money.

Several services of this kind also advertise similar functionalities in addition
to utilizing the previously mentioned Tor service to connect to the network
and interact with their customers [45] [46] [47], often together with web
wallet services. Again here the issue lays in the absolute trust without guar-
antees that must be put in the providers of these services, which could at
any time take any amount of bitcoins passing through their mixes, with Tor
maybe even more easily than without, as the many scam reports can con-
firm. All in all, mixing services seem at present too insecure to be used, and
with limited advantages for privacy depending on the case [Mös13].

Bitcoin is a cryptocurrency providing strong privacy guarantees, however
depending on the wanted features they could be considered insufficient. Its
level of pseudonymity (as with security) depends on how it is used: con-
nected peers, performed transactions and creation/usage of addresses; ”Bit-
coin is as anonymous as you want it to be” [48]. If Bitcoin’s privacy is
not sufficient, there are also other cryptocurrencies like Zerocoin, which can
provide more advanced functionalities depending on the specific needs.

3.6 Alternative Uses

Bitcoin has created through its usage a vast, heterogeneous network of de-
vices communicating with each other throughout the entire world; messages
can be exchanged and data is stored permanently in a huge log file (the
blockchain) accessible by anyone utilizing the system.

However this newly formed infrastructure is not exclusive to Bitcoin, and
can be (positively or negatively) exploited for other purposes. As seen in the
next chapter, alternative cryptocurrencies are continuously created, some of
them taking advantage of the existing Bitcoin network and protocol, utiliz-
ing the same existing functions in different ways or extending the protocol.

By wasting bitcoins sending them to an inexistent output in a transaction
(effectively losing bitcoins forever) it’s possible to insert messages, which
will be then stored forever in the blockchain for everyone to see. This opens
up many possibilities, from innocuous chat-like texts, to advertisements and
spam; there are also available websites that provide “existence certifications”
and “electronic notary” services [49] [50], essentially storing forever the
knowledge of some information at a certain moment in time.
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It’s also possible to create many different types of applications that set up
and maintain a peer-to-peer network parallel and similar to the one used by
Bitcoin, from email and instant message clients, to any type of distributed
application in the cloud. Ethereum [51] is probably the best example to
demonstrate what is possible to obtain by generating and using decentral-
ized networks like the one used by Bitcoin: Ethereum is a developing plat-
form and programming that allows anyone to create the application they
want to run on their network of peers, in a secure way.

Bitcoin can be used for several different purposes, not just for exchanging
money; its network, protocol and community has encouraged and allowed
people to create new and different applications that can securely exchange
information between people around the world without a central authority.
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Chapter 4

Alternative Cryptocurrencies

Bitcoin is a completely open source software: everyone can freely take the
code, modify it as wanted, and release it as a new program/protocol/cur-
rency. Following the increasing popularity and exposure of Bitcoin, dozens
of alternative currencies have been created, died, or are currently being ex-
changed online [52] [53]. There are of course also cryptocurrencies based
on completely different concepts, unrelated to Bitcoin, but here we will have
a look at the ones that stemmed from the original BTC code base.

Alternative “coins” are often abbreviated as “altcoins”, they use their own
network of peers, formed by the people running the relative custom client
software, and perform transactions from and to addresses related to (and
only valid for) the specific currency. The success of alternative cryptocur-
rencies varies greatly: many are simply not adopted and ignored, another
big part is “in the middle”, utilized only by a limited set of users, but some
have become truly profitable and widely used, with an increasingly high
value and exchange rate with regard to Bitcoin [54]. The most successful
altcoins are exchanged for real money and other major cryptocurrencies on
the biggest online exchanges.

4.1 Selected Altcoins

We will now have a look at some of the most important and interesting
alternative cryptocurrencies available, shown in figure 4.1. An altcoin can
differentiate itself from Bitcoin simply just by a different name but unal-
tered code, simple variable tweaks, or completely different and innovative
algorithms, protocols and applications. The presented currencies have in
common high usages and market shares as shown in table 4.1; and present
interesting ideas, features and histories that differentiate them from the rest.
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Figure 4.1: Altcoins’ logos: Namecoin, Litecoin, Mastercoin, Peercoin, Dogecoin, Zerocoin.

Name Available coins Coin value Market cap Volume (24h)

Bitcoin 12’900’000 561 7’200’000’000 31’300’000

Namecoin 8’870’000 2.53 22’500’000 234’000

Litecoin 28’800’000 11.1 320’000’000 4’050’000

Mastercoin 565’000 26.01 14’700’000 1’830

Peercoin 21’500’000 2.34 50’200’000 195’000

Dogecoin 79’700’000’000 0.000398 31’700’000 727’000

Table 4.1: Selected altcoin market data, economic values in US dollars (retrieved 25.5.2014).

4.1.1 Namecoin

Namecoin [55] was the first altcoin that has ever been created as fork of
the original Bitcoin project. It utilizes the decentralized network infrastruc-
ture and currency exchange for a completely new and seemingly unrelated
purpose: a distributed decentralized DNS1 service, providing new .bit do-
mains.

Namecoin keeps all the functionalities of Bitcoin intact, coins can be spent
and received; the transactions however are also used for the added DNS
functionalities, to register, update and transfer domains through new com-
mands available to be used when transferring money. The new service can
be also used to store any wanted identity information besides an IP address,
like e-mails, public keys, Bitcoin addresses, etc. In order for a client to solve a
.bit domain name, it must posses an updated Namecoin blockchain, where
it can lookup the current relevant updated information. This type of DNS is
particularly resilient to attacks, censorship and is independent from any cen-
tral authority, as information is “approved” by the majority of participants.

Merged mining is also another innovative aspect of Namecoin, adopted also
by other altcoins developed after it. A miner can choose to utilize its current
hashing power to work on multiple cryptocurrencies (supporting merged
mining) at the same time, plus in addition also on Bitcoin. The workload
for the miner basically stays the same, hashes are generated at the same

1 Domain Name System (DNS): translation of address strings (host names and web ad-
dresses) to IP addresses, necessary for easy to use networks and web communication.
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speed, they can however “submit” their results to many different altcoins,
thus increasing their success chances of finding a correct solution to the
current Proof of Work problem(s). This results in increased gains for miners,
who are encouraged to work on many different cryptocurrencies, and at
the same time also in increased security for all involved currencies, as their
total hashing power used to keep the block chain updated is increased, thus
making it more difficult for attackers to gain the majority of resources.

4.1.2 Litecoin

If Bitcoin can be currently seen as the “gold” of cryptocurrencies, Litecoin [56]
is then the “silver”: it is the second virtual currency by volume exchange,
being clearly in the lead over the other competitors; its market capitalization
is around 29 million litecoins, or 320 million dollars [22].

Litecoin implements two main changes if compared with the original Bit-
coin code, which made it the most successful altcoin as of yet. First, a dif-
ferent block creation speed: the difficulty is chosen so to have a new block
appended to the blockchain on average every 2.5 minutes, compared to Bit-
coin’s 10 minutes. This is claimed to bring faster transaction confirmation
and an increased resistance to double spending attacks (for the same net-
work computing power), in exchange for an increased blockchain size and
more frequent orphaned blocks. Second, an alternative algorithm for the
Proof of Work problem: instead of Bitcoin’s SHA-256 hashes, Litecoin uses
SCRYPT [Per12], a key derivation function intentionally very slow and costly
to execute on custom/parallel hardware, due to intentional extremely high
memory requirements. This different PoW ensures a fairer distribution of
computing power in the network, by limiting the performance of hardware
which is not a simple CPU and thus giving “normal” users more power.

Litecoin is one of the most supported altcoins, frequently available in most
exchanges, and widely adopted and usable for transactions. Its advantages
over the other available currencies are its technical innovations and early
appearance on the market, united with a strong acceptance by the public.

4.1.3 Mastercoin

Mastercoin [57] is a particular altcoin, without its own separate blockchain,
first described in detail in the white paper “The Second Bitcoin Whitepa-
per” [58]. Due to its characteristics, it is actually usually not considered an
altcoin, but a different cryptocurrency. Mastercoin uses what is called “Mas-
ter Protocol”, it offers a set of new features and its own coins by utilizing
the already existing Bitcoin network, data and communications. The system
exists as a subset of special transactions that can be found in the Bitcoin
blockchain, these transactions contain as their output special addresses (still
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valid Bitcoin addresses) which actually encode Mastercoin calls and actions:
a new programmable layer over Bitcoin.

Mastercoins cannot be mined, all the existing ones have been generated by
a special, hardcoded, one-time-only procedure when the currency was born
and started creating transactions: via a special public campaign, anyone
who sent bitcoins to an advertised Bitcoin address received an amount of
mastercoins proportional to the sent coins and the time (earliness bonus) of
the transaction, effectively exchanging coins between the currencies.

Saving Accounts are the first feature: specially marked addresses whose trans-
actions can be reversed for a restricted period of time by a linked different
address, this works as an additional layer of security. With Distributed Cur-
rency Exchanges any user can publish a buy/sell order/offer, announcing
how many bitcoins are exchanged for how many mastercoins (and vice
versa), when the offer is matched the coins are automatically transferred;
this will also work for any additional cryptocurrency which can easily be cre-
ated by anyone as altcoin of Mastercoin. Forex2 Price Feeds allow anyone to
publish price feeds on the blockchain, telling what value a certain currency
or object has; users can then choose reliable sources to receive updated and
informed information about the current market situation. Related to the pre-
vious feature it is also possible to have an advanced, verified Betting system,
where users can post bets regarding price feeds, which can then be accepted
by other users and are automatically regulated by the Master Protocol.

Mastercoin supports also other interesting additional features, mentioned
in the initial paper, like Escrow Funds and Backed Currencies. Thanks to its
integration and usage of the “underlying” Bitcoin system, the protocol is
frequently updated and can easily gain more functionalities over time.

4.1.4 Peercoin

The altcoin Peercoin [59], also known with the names Peer-to-peer coin, P2P coin
and PPCoin, has been originally described in the white paper “PPCoin: Peer-
to-Peer Cryptocurrency with Proof-of-Stake” [Kin12]; it is the first coin that
implemented a combination of Proof of Work and Proof of Stake [24] to
secure the system and it’s one of the most used cryptocurrencies. Peercoin
differs with Bitcoin in four main areas: coin limit, transaction fees, infla-
tion/deflation, and the previously mentioned Proof of Stake (PoS).

While Bitcoin has a fixed limit on the number of coins that will ever be
mined, Peercoin does not, opting for a steady 1% inflation per year leading
to a theoretically infinite amount of coins being mined. The altcoin imple-
ments fixed obligatory fees for each transaction, the fees however are not

2 Forex: Foreign Exchange Market, a global decentralized market for currency trading.
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given to the miners discovering the block where the transaction is included,
but are instead destroyed, creating deflation and thus balancing the inflation
part of the system.3 With Proof of Stake, Peercoin is more secure against at-
tacks and problems deriving from the “majority” simply being decided by
raw hashing power, to do that the currency considers what is defined as
“coin age”: the product of the amount of money considered times the period
of time it was held for. Blocks can be generated through both Proof of Work
and Proof of Stake, with the longest, main blockchain being selected how-
ever by the highest combined coin age instead of difficulty. When trying to
generate a new block through PoS, the miner keeps sending their own coins
to themselves, thus consuming coin age in exchange for a reward.

Thanks to Proof of Stake, the Peercoin system is much more energy effi-
cient of Bitcoin, not requiring miners to use too much hashing power to
generate new blocks. As time passes, PoW difficulty will increase and lose
attractiveness in the network, while PoS will become the main source of
coin generation; this means better energy usage, reduced wastes, and the
“power” of the system (majority) being held by the user actually possessing
the currency itself, thus interested in the well-being of Peercoin.

4.1.5 Dogecoin

Dogecoin [60] is an altcoin derived from Litecoin; its name, logo and not
so serious objectives derive from the “Doge” internet meme.4 This cryp-
tocurrency, while not providing any substantial changes and new features if
compared to other coins, is one of the most famous around the world, with
a big user base and high exchange rate.

Dogecoin’s changes over the original Litecoin code and system are: limitless
supply and creation of coins (inflationary currency), faster average block
creation time (1 minute) and initially random block mining rewards. Do-
gecoin’s community and usual money usage are also in general considered
more light-hearted and not as serious as all other cryptocurrencies.

This altcoin can be seen as the perfect example of how a decentralized vir-
tual currency’s value is given by the community utilizing it: it started as
a funny and playful social experiment on the wave of dozens of newly
founded altcoins, its increasing adoption rate brought it to be one of the top
cryptocurrencies in circulation. Dogecoin is very frequently used as an inter-
net tipping system between users; it has at the moment limited real-world

3 This is due to the “network effect”, in the words of the developers:
“If inflation increases, then transaction costs become cheaper which increases the urge to
participate in transactions. However, if deflation increases, then transaction costs become
more expensive which increases the urge to save more, which in turn causes inflation.”.

4 The “Doge” internet meme – a Shiba Inu dog with colourful broken English monologue
lines in Comic Sans MS font: http://en.wikipedia.org/wiki/Doge (meme).
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commercial applications, due however to its rising popularity, the value and
exchange possibilities are continuously increasing.

4.1.6 Zerocoin/Zerocash

Project Zerocoin [61] originally started as an extension of the Bitcoin protocol
providing advanced privacy features, as described in the white paper “Zero-
coin: Anonymous Distributed E-Cash from Bitcoin” [Mie13]. After a series
of collaborations and more work however the project has been renamed to
Zerocash [62], providing improvements over the original and a deployment
as a new separate altcoin utilizing the Bitcoin network.

Zerocash should not be confused with the already available Anoncoin [63]
which claims to implement some of the basic features of Zerocoin; at the mo-
ment of writing Zerocash has not yet been released but should see the light
in the upcoming months following further work. Further improvements
related to privacy in Zerocoin have already been proposed in [And14].

The Zerocash protocol generates a new altcoin by modifying and extending
the existing Bitcoin client, utilizing the same network. It provides two new
coins: zerocoins and basecoins which are interchangeable and respectively
anonymous and non-anonymous. Payments done via zerocoins guarantee
anonymity via zero-knowledge proofs5, not revealing sources, recipients or
amounts of money being transferred while at the same time proving the
correctness of the transactions ot others.

Users are free to convert bitcoins to basecoins/zerocoins using mint transac-
tions, the bitcoins are cryptographically committed6 to the new coin having
a certain value, identifier and owner address, with the first two not being
revealed thanks to the commitment. Pour transactions can then be used to
transfer the new coins to different owners in complete anonymity: by using
zero-knowledge proofs a user can demonstrate that they are the owner of
the coins used in the transaction plus other information needed for a valid
transaction, without revealing anything about themselves.

Zerocash advertises (and has been proven to guarantee) strong anonymity
features in an easy to use fashion through complex cryptographic primi-
tives. It is a large and very promising altcoin project, probably one of the
more complicated, offering advanced privacy features which were long re-
quested by the Bitcoin community. The technical paper describing protocol
and used function, “Zerocash: Decentralized Anonymous Payments from
Bitcoin”[Ben14], has already been scrutinized by several different parties
and looks sound, while it’s only a matter of time for the practical implemen-
tation to be used and analysed.

5 Zero-knowledge proof: http://en.wikipedia.org/wiki/Zero-knowledge proof .
6 Commitment scheme: http://en.wikipedia.org/wiki/Commitment scheme.
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Chapter 5

Bitshark

In this chapter we will describe and analyse Bitshark, the custom Bitcoin
client used to connect and extract “interesting” information from the net-
work. Originally developed by Mathias Wellig for his master thesis,1 the
system has been modified and improved to add new functionalities in order
to reach the objectives of this new work. Details regarding the new features
and exact changes over the previous work can be found in section 5.3.

The software is intended to behave as closely as possible as a normal user of
the network, not interfering with the normal operations and data exchanges
and trying to minimally affect the resources of the connected clients. Bit-
shark tries to connect (and being connected) to as many network nodes as
possible, in order to gather all the needed data; running such nodes with
the right resources brings benefits to the Bitcoin system, as information is
transferred more quickly through the network.

We start with a description of the whole system, what it does and how it’s
deployed on different machines. The different components are analysed in
detail, followed then by a description of the data the system provides, a list
of modifications over the original software and statistics of its behaviour.

5.1 System Description

The Bitshark client is a modification of the freely available Bitcoin Core code
(3.1.7), re-adapted to log any interesting data we come across while exchang-
ing messages with the peers we are connected to. Using the already existing
code allows us to have a system that can easily be updated to support new
versions of the protocol, behaves similarly to “normal” clients in the network,
and is guaranteed to follow the right rules.

1 Mathias Wellig: “Bitshark – Real Time Data Analysis of the Bitcoin Network”.
MA thesis, ETH Zürich; 2013.
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The work on the program focused mainly on two points: the previously
explained logging of data, which mostly comes from added statements log-
ging information which is normally thrown away after use; and the support
for a high number of connections to nodes in the network. In addition to
that, code has been developed to ensure the synchronization and correct be-
haviour of multiple clients running the custom Bitcoin client, together with
functions and protocols to gather, organize and merge information and logs
coming from the multiple sources.

A completely new and separate program, the “Analyser”, was developed to
extract information from the logged data, perform experiments and gather
results as presented in section 6.3. Although it is not in any way related to
the Bitcoin base code, its deployment and interaction with the software and
gathered data makes it as well part of the Bitshark system.

The logged data, described in detail in section 5.1.5, is the final product
of the custom Bitcoin client and focuses mainly on transaction and entity
(connected peers) information. The data, together with timing info, can be
used for some very interesting analyses, explained in the next chapter, that
allow us to associate clients and IPs to transactions.

5.1.1 Architecture and Deployment

The Bitshark system is composed of several logical components; depending
on the function these components run specific software and access different
data and/or external networks. A scheme of the general architecture of the
system can be seen in figure 5.1, a description of the parts will follow.

Figure 5.1: Bitshark system architecture.

The first component is the worker (5.1.2): this part is responsible for commu-
nicating with the Bitcoin network to log information; multiple instances of it
run concurrently and send information to the middleware component (5.1.3).
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The middleware is responsible of collecting, merging and storing the data
received from the workers via the new communication protocol (5.1.4) in a
database (5.1.5); the latter is also used to keep information required to main-
tain the whole system active. Finally, the Analyser component (5.1.6) is in
charge of extracting data from the database, analysing it and reporting its
findings, shown in the next chapter.

Hardware and Software

The whole system runs on three consumer-grade desktop computers: one
machine is for the workers, one for the middleware and the main database,
and one for the Analyser software with a secondary database.

The first machine has the hardware configuration described in table 5.1, the
system runs VMware vSphere [64], a server virtualization operating system
based on the ESXi hypervisor [65]. Although this is a proprietary solution,
a free time-unlimited version is available, limited only in the usage of ad-
vanced tools plus with a restriction on a maximum of 8 virtual processors
per VM and 32 GB of RAM (limits not reached by our hardware). The work-
ers are run inside Ubuntu Server [66] virtual machines customized for very
low memory usage, which in turn are managed by vSphere2. Each VM has
at its disposition a virtual CPU with the same details specified in the hard-
ware table, 50GB of disk space and 1.8GB of RAM; the resources are used
to exclusively run a Bitshark Bitcoin client. The hypervisor machine has at
its disposition a range of public, externally accessible IPs to assign to the
virtual machines (plus itself of course), this ensure a correct and optimal
behaviour of the clients in the Bitcoin network.

CPU Intel Core i7-4770, 4 cores, 3.4 GHz

RAM Corsair Vengeance, 32GB (4x 8GB), DDR3, 1333MHz

HDD Western Digital RED, 1TB, SATA 6Gb/s

Network 1Gb Ethernet

Table 5.1: Hardware configuration for the workers’ (vSphere’s) machine.

The second machine (Middleware) contains the hardware listed in table 5.2,
the operating system is Ubuntu Server 12.04 LTS. There are two main pro-
grams being run on the middleware computer: the first one is the Bitshark
client code, run with particular options that make it behave differently from
the workers and act as the entity responsible for collecting and merging data;
the second one it the main database, which contains all the data to keep the
state of the program updated, and to log all interesting information. The

2 We have a total of 16 workers, all assigned to the same hypervisor.
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database system used is MongoDB [67], a document-oriented NoSQL stor-
age system; we utilize its replication capabilities over multiple machines to
optimize workload separation, this machine contains, as previously men-
tioned, the primary database (master).3

CPU Intel Core i5-4670, 4 cores, 3.4 GHz

RAM Corsair Vengeance, 16GB (4x 4GB), DDR3, 1600MHz

HDD (OS) Western Digital Caviar SE, 160GB, SATA 3Gb/s

HDD (DB) 2x Western Digital RED, 3TB, SATA 6Gb/s , RAID 1

Network 1Gb Ethernet

Table 5.2: Hardware configuration for the middleware machine.

The third machine utilizes the same hardware as the one used to run the hy-
pervisor and is described in table 5.3, the operating system is Ubuntu Server
14.04 LTS. The server runs two programs: a database system, continuously
running, and the Analyser software, being run whenever we need to do ex-
periments with the collected data; to collect geolocation information about
the recorded IP addresses we also use MaxMind GeoIP data [68]. We have
again MongoDB, running as slave, replicating part of the data found on the
primary database on the middleware machine. The Analyser program runs
and extract information by taking the data stored in the local DB.

CPU Intel Core i7-4770, 4 cores, 3.4 GHz

RAM Corsair Vengeance, 32GB (4x 8GB), DDR3, 1333MHz

HDD Western Digital RED, 1TB, SATA 6Gb/s

Network 1Gb Ethernet

Table 5.3: Hardware configuration for the Analyser server machine.

5.1.2 Workers

Workers run a modified version of the Bitcoin client: a client called Bitshark
run in “worker” mode, connecting to the Bitcoin network and behaving
mostly like a normal node, differing in the area of connections and logging
of data and with new functionalities for the relations with the middleware.

3 See the MongoDB manual for replication, master-slave replication:
http://docs.mongodb.org/manual/core/master-slave.
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Connections

In the original Bitcoin core implementation a node is limited to 8 outgoing
connections and 125 total connections (including the incoming ones), the
client has a thread continuously running that keeps trying to connect to
new nodes whenever the number of connections is insufficient, the list of
possible nodes to connect to is known from previous history and from the
advertisements of other clients over time.4

Bitshark rises the limits to 700 and 950 for respectively the output and total
connections, in addition to that, multiple threads5 are used to parallelize
the connection operations and greatly increase the speed at which peers are
connected to actively. In order to have multiple clients collaborate for the
collection of data, addresses that are tried to connect to are not the ones
locally known: collected advertised addresses are stored and regularly6 sent
to the middleware, new addresses can also be requested at any time again
from the middleware. If a client in the Bitcoin network actively connects
to one of the workers (which thus accepts an incoming connection) and
another worker was also connected to it, the middleware orders the latter to
disconnect and forget that address, while passing “control” of the address to
the former worker. This way the system can dynamically adjust and decide
which set of addresses workers are responsible for and ensure that the whole
infrastructure is only connected once to any network nodes.

Subnets

In the default Bitcoin code, a node avoids to connect to multiple nodes if
their addresses share the same /16 subnet,7 this is made to avoid select-
ing “related” clients which, considering the limited amount of connections,
statistically don’t contribute much to updated data and lead to a restricted
connection to the Bitcoin network; this limitation is removed in Bitshark.

Network Interaction

As explained in section 3.1.6, the Bitcoin protocol utilizes several different
messages to exchange data across its network. The Bitshark modified client
tries to act as much as possible as a normal client, supporting the network
during its logging procedures and behaving as passively as possible.

4 See the addr message, in section 3.1.6.
5 50 threads in the current implementation.
6 The interval is set to 10 seconds, with backoff in case of problems on the middleware.
7 The specified CIDR notation implies that addresses from XXX.XXX.0.0 to XXX.XXX.255.255

are in the same subnet; see: http://en.wikipedia.org/wiki/CIDR notation.
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Bitshark has only one active part in its behaviour: when a new (inbound or
outbound) connection with a peer is established, a series of pings is sent over
a short period of time in order to try and estimate the link delay between
the two nodes. The pings are done via the already present messages in the
Bitcoin protocol, they put an insignificant load on the target nodes (who only
have to send the relative message back). This active procedure makes later
analyses of the data more precise, but is not required to get good results.

The modified client answers to most of the queries made by other peers as
the default implementation; a list of the modifications done for performance
reasons and the relative involved messages follows.

All transactions are relayed as usual through the inv-getdata-tx procedure:
Bitshark asks for new transactions advertised via inv and, once they are
received and verified, rebroadcasted and transferred via further inv and tx

messages. Blocks however are not relayed: the system only asks for new
blocks advertised via received inv packets, but doesn’t relay the data to
other connected peers. The reason for this lies in bandwidth consumption:
due to heavy block sizes and new clients needing to download big parts of
the blockchain, plus the fact that Bitshark is connected to a large amount of
nodes, the bandwidth used would be too high; inv messages are not sent
after the receipt of a new block and getdata requests for blocks are rejected.

The Bitshark software also additionally ignores the mempool request, which
asks for a list of all transactions in memory which have been verified but not
yet confirmed. Normal clients usually never need this kind of information,
that would also result in higher network usage due to the high number of
transactions we keep in memory thanks to our high number of connected
nodes. More details about this and other messages can be found in the
protocol specification page of the Bitcoin wiki [28].

Data Logging and Transmission

The main purpose of the Bitshark modified client is to log “interesting infor-
mation”; in the current system this translates to connected entities (network
nodes), transactions and bloom filters (3.3), together with global timing info.
Data is stored on every worker in particular buffers; depending on different
rules, data that is old enough or “complete” is transmitted to the middle-
ware and erased from the buffers at regular intervals.8

Information about entities is stored in two moments: one being when the
connection is established, and the other when the remote client disconnects
(or gets disconnected). In the first we immediately store the new just discov-
ered data about the client: besides the current timestamp representing the

8 A separate thread checks the logged data to be sent and erased every 30 seconds.
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“from-time” and the client’s IP, a new UUID9 is generated and assigned to
the node’s IP during its lifetime (the time it remains connected to us); this
data is marked to be sent as soon as possible to the middleware. Before the
client disconnects we usually receive a version message from it, giving us
details about the client name and version used; we also try to discover and
estimate the minimum link delay, by sending a series of Bitcoin-pings and
listening for answers. When we lose connection with a client any additional
information, including the current “to-time” timestamp, is marked as ready
to be sent to the middleware.

Transaction data logging is executed whenever a new inv message is re-
ceived advertising a newly discovered (received or created) transaction by a
client. What we store is a list of all the clients we are connected to which
advertise knowledge of the transaction, together with a timestamp represent-
ing the moment we receive the message from that specific node. The worker
uses as data structure for this information a map of transaction hashes to a
list of pairs (entity id, timestamp). The transaction hash used is simply the
one advertised in the inv message, while the entity id is the string associated
with the node (IP) which sent the message to us. After enough time10 has
passed since the first advertiser of the transaction, we can send the collected
information about the specific hash to the middleware.

Bloom filters are publicly advertised by clients running Simplified Payment
Verification versions of the Bitcoin software to any peer they connect to via
a special filterload message. Bitshark records the filter as it is given and
passes it to the middleware for storage in the database as soon as possible.

Appendix section A.1 describes the formats of information as stored on the
database, these data structures are almost identical to the ones used inter-
nally by the workers and can help to better understand the previously listed
details about the gathered info.

5.1.3 Middleware

The middleware machine has three important roles in the system: handling
workers, merging and completing received information and storing data per-
manently in the database for later analyses. There are two programs running
on the computer: the Bitshark client, run in a special “middleware” mode,
for the first two roles; and a MongoDB instance for database interaction.

9 Universally unique identifier, see: http://en.wikipedia.org/wiki/Uuid.
10 Currently the limit we use is 30 minutes, though this number could be lowered if needed

to save storage space, while not affecting the results of the currently executed experiments.
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Worker Management

Workers can run independently, they however need the middleware to co-
ordinate the efforts for covering as many connected clients as possible and
storing the logged data accumulated in their buffers permanently.

The middleware knows of all workers that are currently participating in
the data logging procedure, new workers check in with this machine and
rely on it to receive and update the list of addresses they are responsible for.
The middleware continuously checks the online status of workers and keeps
information regarding IP assignments in memory and in the database to be
always up to date with the situation even in case of unforeseen failures.

Workers can at any given time report newly received IP addresses of nodes
(from advertisements) or request for new addresses to work on in addition
to the already assigned ones. The middleware will in the first case add
any really new IP to the common pool of addresses available to be given
to a requesting worker, and in the second case select a certain number11 of
IPs, assign them and send them to the needing worker. Workers can also
announce new incoming connections, that the middleware has to check to
reassign (if needed) the specified IP from the previous owner (which will
then disconnect from it) to the new worker.

Details about the protocol and functions used to communicate between mid-
dleware and workers can be found in section 5.1.4.

Data collection and storage

The middleware puts the data received from the workers in special buffers
divided by data type; at regular intervals the collections are traversed by
apposite threads which check which data is to be stored on the database
and eventually be discarded from the buffer structures.

Bloom filters are logged by the workers as they are received, without any
additional information; the same bloom filter is logged in the same way by
any worker. Due to this property this data can be stored by the middleware
in a simple set without any special care; at regular intervals all entries are
always selected to be written to the database (only if the information is not
already present) and the buffer is then emptied.

Entity information comes with random UUIDs generated by the workers; as
mentioned in the previous section the logging of this information happens
in two periods on the worker: on connection and on disconnection of the
remote node. Entities are stored in a map on the middleware, using as key
the mentioned random unique id; in the case that we receive a new entity
which is already in the current buffer, we replace the previous information as
11 1000 IP addresses per request with the current settings.
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we know the updated entity must come from the same worker and contains
more complete data. While iterating through this buffer we again always
select all entries to be sent to the database and then be deleted; we however
perform a special insert (update) on the DB so that any previous information
is overwritten and updated if needed.

Transaction information uses as identifier the transaction hash, used for the
same purpose also in the rest of the Bitcoin software; as buffer on the mid-
dleware we use again a map, with as key the previously specified hash.
Transactions contain two very important types of data: the input addresses
and the list of originators with their timestamps. For every new piece of in-
formation that arrives to the middleware we first check if it’s already present
in the buffer, if it isn’t we simply add it, otherwise we proceed to merge the
originator lists by inserting the new elements in the current list for the trans-
action. To merge the originator lists we first check for duplicates: cases
where a node with a certain IP is connected and sends an inv message to
multiple workers, resulting in list with entries for originators with different
ids but same IP. We solve the (rare) duplicate problem by simply keeping the
entry which has the lowest registered timestamp. The rest of the merging
procedure ensures that the list is kept in order of time, beginning from the
first originator up to the latest one. During the regular check of the buffer
for transactions that are ready to be written to the database, for each entry
we look at the time it was last added to the map or modified by the previous
merge procedure: if enough time has passed we consider the information
complete (meaning no other worker should send data about it), write it in
the DB and erase it from the buffer.

Transaction information completion

The transaction information arrives to the middleware with no information
about its inputs; as explained in section 3.1.3, Bitcoin transactions don’t
directly contain input addresses, but instead refer to old transaction outputs.
Due to that retrieving them becomes computationally expensive to do on the
workers, given the amount of received transaction and the limited resources.

The middleware takes care of filling in this missing information, by keeping
its Bitcoin client connected with a limited set of nodes (like a normal client),
ensuring updated blockchain and transaction data. Whenever a transaction
is old enough to be selected to be written to the database, the software
searches in the local memory the needed information about previous trans-
actions and fills the list of address inputs with the retrieved data before
sending everything to the DB.
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5.1.4 Worker-Middleware Communication

Data transfers and remote function calls between workers and the middle-
ware, both running a modified version of Bitcoin Core, are done through
JSON-RPC [30], a lightweight remote procedure call protocol already used
in Bitcoin. The middleware is the part implementing the new custom func-
tions, which can be called programmatically by the workers (or “manually”
via scripts / command line) to provide different results and/or effects. All
the calls done from the workers to the middleware are also used to syn-
chronize time between the two parties. A list of the most important new
functions available follows; complete examples of the precise structure of
invocations and answers can be found in the appendix at section A.2.

• getIPs: Workers call this method to signal to the middleware they
would need new additional IPs to process (try to connect to); this is the
first function a newly created worker calls on the middleware and is
also used to register it with a new identifier on the middleware to keep
track of the assigned IPs. When there are addresses that are available
(not assigned to any worker), the middleware answers by sending back
a group of IPs and marking them as assigned to the worker.

• newIPs: Workers keep receiving advertisements of IPs for nodes they
could possibly connect to; in the Bitshark modified clients these ad-
dresses are however only stored in a separate buffer and sent to the
middleware through this function call. The middleware will on re-
ceipt add them to local collections depending on their known/new
status and to a special permanent collection on the database.

• newLogs: This function is called by workers on the middleware when-
ever new data that has been logged locally is ready to be sent and then
logged on the database. Depending on the information that needs to
be transferred, the method is called with a different payload which
could be composed of transactions, entities, or bloom filters.

• newIncoming: When workers receive a new incoming connection from
a node in the Bitcoin network they announce that to the middleware,
which registers the new assignment. If the node was already assigned
to another worker the latter is contacted to disconnect and forget it.

• removeIP: This is the only function which is called by the middleware
on a worker and is related to the previous one in dealing with new
incoming connections. When the middleware discovers that a new in-
coming connection with a certain IP has been established by a worker,
it will call this method with the mentioned address on the previous
worker responsible for the IP (if any), to make it disconnect and not
try to connect again to it in the future.

46



System Description Bitshark

5.1.5 Database and Logged Data

As database management system we use the already mentioned MongoDB
NoSQL open source software, running with a master-slave configuration on
respectively the middleware and the Analyser server. The master database
works as any type of other DB, accepting new data, modification and read-
ing operations; while the slave database works as an always automatically
updated copy of the master, accepting only read operations. With this type
of deployment we ensure that the master server is always quick and respon-
sive when writing new data coming from the middleware, even if we at the
same time run read-intensive operations for our analysis on the other server.

The stored data can be divided into two big databases bitcoin state and
final logging: the first is used to save temporary data and information
about connected and disconnected nodes in the history of Bitshark, while
the second is used to keep track of all the logged transaction, entity and
bloom filter information mentioned in the previous sections.

The bitcoin state database contains data about nodes: when they were
connected to us, for how long, which version of Bitcoin they use, to which
worker they were assigned last, etc. We could use part of this knowledge
to recover more quickly in case of an unexpected middleware crash and
later recovery, to restart the workers and divide the workload as previously
stored, however at the moment we don’t make use of it as we never expe-
rienced important bugs since the various updates to our software; we keep
logging this information as it is easily obtainable and could be useful in the
future for other types of analyses. This database is not replicated on the
slave server and is only updated and accessible locally on the middleware.

The database final logging contains all the data we need for the analy-
ses presented in this thesis; the data is added incrementally as time passes,
excluding some special cases, the whole storage can be seen as a big append-
only log. We have three collections in the database that keep the data for re-
spectively transactions, entities, and bloom filters; the structure of the stored
data can be seen in A.1. In addition to these, we also have the collection
“assignable transactions”, which can be seen as a subset of the transaction
collection. Since workers receive and log all transactions that they receive
via inv only messages, we end up with a lot of logged data about transac-
tions relayed only by one originator (or rarely few of them), due to them
being not well connected, the transaction not being valid, or other issues.
For our purposes that will be better explained in the next chapter, we then
keep this special collection populated only by transactions with a certain
minimum number of logged originators.12 All the valid transactions that
are broadcasted through the Bitcoin network are logged here.

12 In the current software version, the minimum is of 500 originators.
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For each transaction we log the following fields:

• id: The identifier of the transaction is the tx’s own hash as used in the
Bitcoin network and advertised in inv messages, used in string form.

• originators: List of originator objects, each originator is composed of
an id and timestamp field; the list is saved in ascending order of times-
tamps. The id field links to the respective entity in the entity collection,
the timestamp is given as Epoch Time13 in milliseconds.

• inputs: List of Bitcoin addresses used as inputs in the transaction,
given in Base58Check string form (see 3.1.1); could be empty due to
the receipt of a single inv, duplicate addresses are only stored once.

Entities are stored with this list of properties:

• id: The identifier of an entity is a random UUID generated and as-
signed by the worker connected to it, saved in the default string form.

• ip: IP address of the entity (no port information).

• version name: Name of the used client as advertised in the received
version message; could be empty, in case of multiple advertised user
agents14 the main (first) one is used.

• version number: Version number of the used client as advertised in
the version message; same indications as for the version name.

• time online from: Epoch timestamp in milliseconds when we con-
nected, actively or passively, to the entity.

• time online to: Epoch timestamp in milliseconds when we discon-
nected for any reason from the entity; a zero indicates that the Bitshark
system still has an established connection with it.

• link delay minimum: The minimum recorded link delay between a
series of Bitcoin pings/pongs, measured as half the milliseconds be-
tween a sent ping and a received pong; a value of 1000 indicates an
unknown delay due to an insufficient number of answers.

Finally, bloom filters are saved as follows:

• id: A serialized hexadecimal string of the fields contained in the
bloom filter, the contained variables are the byte data vector (variable
length), number of hash functions (4 bytes), random nonce (4 bytes),
and special flags (1 byte); all of them are separated by a dash.

13 Unix time: http://en.wikipedia.org/wiki/Unix time.
14 Bitcoin improvement proposal – Protocol Version and User Agent:

https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki.
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5.1.6 Analyser Server

On this computer we run our analysis software which extracts the data
stored on the local slave database, transforms it in what we need and tries
to estimate related and unrelated addresses, leading to the hiding set size.

Once the data has been logged and stored by the Bitshark workers and
middleware we need no further interaction with the Bitcoin network or the
blockchain to perform our work, we only need the DB plus a local map of
addresses to geographical locations. The analysis process uses all the re-
sources available, thus having a separate machine working on it is essential,
especially if the logging and analysis processes are performed in parallel.

The Analyser program’s purpose is to utilize all known (old and new) heuris-
tics and ideas to form a map of related and unrelated addresses in a com-
pletely automatic way. We look at the addresses appearing in the transac-
tions we logged, which correspond to (at least) the transactions recorded in
the blockchain in the same period, and see what we can infer about them in
relation to the others over time. As this software and the ideas behind it are
the main new product of this thesis and cover a lot of ground, the details re-
garding them will be presented later in the context of the study and results.
A thorough description of the Analyser software, flow of the program, and
utilized heuristics will be presented in section 6.3.

5.2 Statistics

We will now quickly present some statistics about the Bitshark system and
the data logged during our experiments. All these numbers refer to the
time periods when the system was fully active (without boot and shutdown
times) and connected to multiple nodes in the Bitcoin network.

Every hour on average we connected to and logged 2587 entities, from them
we received and recorded 8 bloom filters and 2956 transactions, of which
2505 were assignable ones broadcasted throughout the network.

On the database an entity takes on average 0.2KB, a bloom filter 4KB, and a
valid (assignable) transaction, with its lists of inputs and originators, 357KB.
After three weeks of measurements this leads to 54MB of bloom filters,
354MB of entities and 864GB combining all the different transactions to-
gether.

On average at any point in time we had around 7’000 outgoing connections
plus 2’000 incoming connections. Each worker maintained, after an initial
build-up period, a balanced and stable amount of outgoing connections;
while the incoming requests slowly increased over time the more our nodes
became known and available to connect. The combined network usage had
an average of 1500KB/s in upload and 750KB/s in download.
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We connected to a total of 1’303’752 different entities (remember that each
client results in a new entity at each connection/disconnection cycle). Of the
1’303’752, 640’395 (49.1%) advertised their versions communicating with us
and were not automatic bots; we excluded the clients “Snoopy”, “shodan.io”,
“getaddr.bitnodes.io”, and “bitcoin-seeder”. In the previously mentioned
connected nodes which behaved normally, we have the vast majority com-
posed of Satoshi clients, 623’916 (97.4%), 12’303 (1.9%) known SPV clients
(“BitCoinJ”, “breadwallet”, “IceWallet”), while the rest are mostly alterna-
tive Bitcoin clients (“libbitcoin”, “btcwire”, “Gocoin”, ...). Chart 5.2 shows
the distribution of the main client versions we were connected to; note that
this doesn’t represent the real percentages of (online) users, but just the con-
nections of our own system over time.

Figure 5.2: Bitcoin client version distribution.

5.3 Changes and Improvements

As mentioned in the beginning of this chapter, Bitshark was initially devel-
oped by Mathias Wellig during his master thesis, his work was meant to be
the basis for further developments on the Bitcoin topic, which resulted in the
current version that has been presented. We will now quickly go over the
most important changes and additions/removals from the original software.
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First of all the whole code has been repeatedly been ported to new and up-
dated versions of the Bitcoin core software as they came out. The project was
originally written for version 0.8.4, released on September 2013; the code has
first been brought to version 0.8.6 and finally to the current 0.9.1. Keeping
the software up to date not only ensured the obvious performance improve-
ments and security assurances, but also guaranteed an optimal interaction
with the Bitcoin network, support for all connected clients, any new protocol
feature, and in general a positive status of the node in the environment.

The logged data was initially simple and thorough: all transactions and
blocks received were logged as they were received, the transactions con-
tained all the input and output scripts, while the blocks all the headers and
contained data. In the current Bitshark version transactions only contain
their hash, list of originators and input addresses, while block logging has
been temporarily disabled altogether. These decisions allowed us to concen-
trate on the data we needed and also had the advantage of saving a lot of
disk space for the data stored database, allowing for longer logged runs.

Entity logging is a new addition to the software, knowing when different
nodes were online is an essential part of our analysis, other logged data like
the list of originators in transaction has been modified to link to this new
type of information available for analysis.

The Bitshark client running on the middleware didn’t initially connect to any
other node in the Bitcoin network, it was simply meant to send and receive
RPC commands to log the necessary data on the database. In the current
version the middleware acts as a normal node in the network, with a default
amount of connections, keeping an updated blockchain. This change allows
us to receive incomplete transaction information from the workers, and com-
plete data about their input addresses by looking at locally known data on
the middleware at the time of writing the information in the database.

There have been numerous performance improvements in several areas of
the Bitshark client running on the workers. As each of them runs in a vir-
tual machine with limited resources it is very important to make the soft-
ware react well under stress and uncommon situations. To avoid additional
problems, variables regarding the protection of the client against denial of
service and bad behaviour have been tweaked to obtain stricter results.

The Analyser server and the very important software running on it are a
completely new addition to the Bitshark system. Beforehand workers were
run on two different physical machines, more workers were supported with
more resources; now they are restricted and optimized on a single machine,
while the other one is used exclusively for the analysis of data.

51



Bitshark Changes and Improvements

Lastly, the machine responsible for the virtual machines of the workers ini-
tially ran XenServer [69], a free hypervisor for server virtualization, instead
of the current vSphere [64] software. While the first was a great open source
solution that worked for the initial experiments, after some time we noticed
a quite high and inexplicable growth in required memory (RAM) during our
prolonged experiments, combined with random OS crashes which threat-
ened to ruin long running logging of data. The switch to the VMware solu-
tion brought to new and updated virtual machines, less memory and CPU
consumption and in general a more stable environment for our ends.
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Data Analysis

In this chapter details about the data analysis procedure will be described.

A theoretical in-depth background on transaction relay (6.1) and the found
possibility of assigning transactions to entities (6.2) will be given, together
with data describing the chances of this procedure in different scenarios.

The chapter will continue with a definition of the Analyser software and all
the utilized heuristics, together with an explanation of how different data
about related and unrelated addresses can be combined together to obtain
an estimation of the “hiding set” size; finally we conclude with a description
of the actual program flow and execution (6.3).

6.1 Transaction Relay Details

The core part of this work is based on the fact of being able to assign (some
of) the logged transactions to entities that were connected to our Bitshark
system. In order to do that and understand why this works and the reason-
ing behind the used variables, it is important to go over how exactly trans-
actions are created and broadcasted through the Bitcoin network, which is
what will be explained in the next paragraphs. We concentrate our efforts
on the Satoshi Core client,1 which composes the vast majority of the full
nodes (responsible for transaction relay) and, as shown in section 5.2, in our
experiments represented more than 97% of the connected clients.

Other studies [Dec13] [Don14] already analysed the broadcast and diffu-
sion of transactions (and blocks) over the Bitcoin network. We are interested,
however, in the precise timings involved in relays happening to near neigh-
bour nodes; instead of the slow increase of knowledge over time, we look at
the initial “burst” of data generated by clients creating new transactions.
1 SPV clients running BitcoinJ follow a simplified relay procedure, where the transaction itself

is sent immediately after creation to half of the connected clients, without inv or getdata.
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Transactions are transmitted from peer to peer, following the sequence of
messages inv → getdata → tx: node A announcing a newly received or cre-
ated transaction via its hash, node B requesting the data of the transaction (if
not already known), and node A answering with the transaction itself. Once
the transaction is received by B, it will proceed to verify it in a usually neg-
ligible amount of time and relay it to its other peers. It can then be inferred
that the lower limit for time needed to transmit any transaction between two
nodes A and B is given by three times the link delay between the nodes.

The whole receive/send procedure of a Bitcoin client is run in a thread
which executes the code reported in the appendix at A.3. Everything can be
summarized as an infinite loop, where first all messages are received from
all the peers and then all packets that need to be sent are transmitted again
to all connected peers, every iteration usually runs in a negligible amount of
time. The loop has a condition at the end that depends on whether there’s
additional data that has to be sent for various reasons to any of the nodes;
if it’s not the case, the loop (after sending any needed data to all connected
peers) sleeps for 100 milliseconds.

If we consider again the case with the two nodes A and B, we can then see
that before B is able to relay the transaction received from A to any other
node, not only the link delay, but also the loop time has to be considered.
Each time when one of the nodes has to receive a message and react to
it there’s the chance that the data arrives when the loop is sleeping, thus
causing the total relay time to grow with a certain probability.

We collected data about the two variables: link delay and loop time; for the
first we used the information already logged by Bitshark (by taking a ran-
dom selection of 10’000 values), while for the second one a normal Bitcoin
client has been left to run multiple times, connecting to a “normal” amount
of peers, collecting timing information about the loop with varying amounts
of connections and workloads.

Chart 6.1 shows the CDF2 for the time it takes to perform one iteration of
the loop in the Bitcoin Core client. It can clearly be seen how there are two
distinct cases: about 83% of the times the loop doesn’t sleep and the iteration
is performed in negligible time (less than 5 milliseconds), in the rest of the
cases the iteration takes slightly more than 100 milliseconds to complete due
to the trigger of the sleep condition at the end of the loop.

For our upcoming calculations we will approximate this variable as a ran-
dom number: 0 with 0.8343 chance and 100 with 0.1657 chance, indepen-
dently from previous values; the probability of having exactly i iterations in
a row without a sleep can be calculated as:

NoSleepi = 0.1657 · 0.8343i−1

2 Cumulative distribution function: http://en.wikipedia.org/wiki/Cumulative distribution function.
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Figure 6.1: Bitcoin client loop time cumulative distribution function.

Chart 6.2 shows the CDF for the link delay, measured by Bitshark through
Bitcoin protocol pings/pongs. The peculiar structure of the chart that seems
divided in steps of 50 milliseconds is given by the fact that we obtain this
information by using Bitcoin messages: we depend on the loop time for
receiving the ping and the pong messages, as they could arrive while the
loop is sleeping. As the link delay is calculated to be half the time needed to
get an answer after a ping, if a message arrives to either side while the loop
is sleeping (the rest of the times the iteration time is negligible) then the link
delay is increased by up to 100 milliseconds, resulting in a link delay being
near a multiple of 50 with higher probability.

For future calculations it’s important to remember that the link delays, which
are measured as the minimum ever recorded for each node connected to Bit-
shark, in the majority of the cases, 97% of the times (0.9722), are equal or
greater than 50 milliseconds.

Bitcoin has no mechanism in place for clients to select their “best neigh-
bours” by picking nodes with the best delay or bandwidth; as users of the
cryptocurrency are spread all across the world, usually nodes end up with
connections between them having high link delays due to random decisions.

One last remark about transaction relay has to be done about the selection of
nodes that will receive the inv advertisement for a newly created or received
transaction. When a node receives a new transaction (that is verified to be
correct) it will, at every loop iteration, select at random one of the connected
nodes: this node will receive the inv plus any other advertisement that was
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Figure 6.2: Bitcoin network link delay cumulative distribution function.

left to be sent to it. In addition to this, every connected node will also have
a 25% probability of receiving any inv that had yet to be received (including
the new one). The procedure is repeated at each iteration, until eventually
the inv message gets sent to all the peers; the relevant code segment can be
seen in A.3. When a node creates a new transaction, the same procedure
is followed, but only for clients with versions equal or newer to 0.9.0 (up to
the current 0.9.2.1). Nodes running older Bitcoin Core versions, which nowa-
days usually means from 0.8.0 to 0.8.6, use exclusively the “trickle node”: at
each loop iteration one peer at random is selected to be the trickle and will
have a 100% chance to receive the inv for the newly created transaction,
while the other nodes will have no possibility of receiving it.

With this information we can calculate the chance of being selected to receive
an inv for a new transaction after a certain number of loop iterations (on the
remote node), depending on the number of connections and client version
used by the peer. Assuming we are connected to the transaction-originating
node A, with c connections to its peers3 and at loop iteration i, for respec-
tively the older and the newer versions of the Bitcoin client, our chances of
being selected at the current or in a previous iteration are:

3 Including us, the node for which we calculate the selection probability.
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SelOldi = 1−
(

1− 1
c

)i

SelNewi = 1−
(

1−
(

1
c
+

c− 1
c
· 0.25

))i

Table 6.1 shows some results for chosen example values; note that the chance
that we are selected to receive an inv from a node which didn’t create the
transaction (only relaying it) is the same for all versions, given by the same
formula used for the newer Bitcoin version.

Loop Iterations 1 2 3 4 5 6 7 8

ver. 0.8, 10 peers 0.10 0.19 0.27 0.34 0.41 0.47 0.52 0.57

30 peers 0.03 0.07 0.10 0.13 0.16 0.18 0.21 0.24

50 peers 0.02 0.04 0.06 0.08 0.10 0.11 0.13 0.15

70 peers 0.01 0.03 0.04 0.06 0.07 0.08 0.10 0.11

90 peers 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09

ver. 0.9, 10 peers 0.33 0.54 0.69 0.79 0.86 0.91 0.94 0.96

30 peers 0.28 0.47 0.62 0.72 0.80 0.85 0.89 0.92

50 peers 0.27 0.46 0.60 0.71 0.79 0.84 0.88 0.91

70 peers 0.26 0.45 0.60 0.70 0.78 0.84 0.88 0.91

90 peers 0.26 0.45 0.59 0.70 0.78 0.83 0.88 0.91

Table 6.1: Selection chance for an inv message from the node creating a transaction.

6.2 Assignment of Transactions to Entities

We will now have a look at how we can decide if and to whom to assign a
certain transaction in our analysis based on the Bitshark logged data. Every-
thing revolves around the stored originators for each transaction: a list of all
the entities that sent us the inv advertising it, ordered by time of arrival of
the message. If a transaction is assigned, it will be linked to the first entity
in the list, which is then said to be the source of the transaction.

The concept behind the assignment is quite simple: we compare the time
difference ∆t between the first and the second originator in our list; if the
difference is “big enough” and the next few originators are not separated by
a strangely high delay (indicating possible network/transmission problems),
we assign the transaction, otherwise we don’t. What we are doing is an
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analysis of the broadcast status of each transaction between the different
peers, taking advantage of the fact that the Bitshark system is connected to
the vast majority of the reachable full nodes in the network.4

If we are connected to the real originator of a transaction and we get an
advertisement from it in the initial phases of the broadcast (loop iterations),
then there’s a high probability the next ones from the other contacted nodes
will arrive after a certain delay later in time. If we are not connected to the
real originator or receive the advertisement from the real originator too late,
after many other entities received it and too much time has passed, then
with high probability we will log many originator timestamps very close in
time due to the broadcast mechanisms. A more formal definition will follow.

We have to set a precise limit value for ∆t, as high as possible to correctly
detect false positives and cases where transactions cannot be assigned, but
low enough to correctly assign them when we find ourselves in the right
situation, as seen later. Depending on the wanted precision level of the
transaction assignments, this value can be set to lower (more assignments
and false positives) or higher (less assignments and false positives) values.

We base our decision for the ∆t limit on the measured link delays together
with the information we have about transaction relay. We know that 97.22%
of the nodes have a delay which is more than 50ms and that 83.43% of the
times the receive/transmit loop doesn’t sleep; also basically no connected
node had a link delay lower than 17ms (99.95%). We set the ∆t limit to
140ms: we are then very confident that any node which is chosen to receive
an inv will not be able to relay it before at least 150ms. The probability of a
node B relaying a transaction (sending aninv advertisement for it) after more
than 150ms after A began the relay to it is given by:

SlowRelay = 0.9722 + (1− 0.9722− 0.0005) · (1− 0.83433) = 0.9836

Meaning the chance that the node has link delay higher than 50ms, or the
chance that it lies between 17ms and 50ms combined with the loop sleeping
at least once during the A → B relay. In the following paragraphs it will be
shown how this affects the assignment of transactions in different scenarios.

Lets consider the (very frequent) scenario where our Bitshark system is con-
nected to the full node A creating and relaying a new transaction. To be able
to assign the transaction we must receive the inv for it at a certain time, and
receive the next inv from another node after at least ∆t. We know that:

4 We can confirm this by comparing the number of connections of our system with the public
data available from the many automatic crawlers of the Bitcoin network.
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• At A’s loop iteration i the (accumulated) probability that we have been
chosen is Seli, which is SelOldi or SelNewi depending on the Bitcoin
client version being run on node A.

• At A’s loop iteration i, given the number of connections c node A has
with its peers, we will have on average SelNodesi = Seli · c total nodes
that are selected to receive the inv.

• We can safely ignore any node that is selected for relay after the loop
on A sleeps or recursively by A’s peers, as the passed period plus the
time needed for relay would make their inv messages certainly arrive
late enough in time to not affect our initial originator list positions.

For ∆t to be high enough:

• Our Bitshark node must be selected before the loop on A sleeps, after
i iterations, if that doesn’t happen SelNodesi will begin relaying inv
messages about the transaction and with an extremely high probability
they will arrive (between each other or together with A’s inv to us after
the sleep) with a short delay between each other.

• Every other node that has been selected, SelNodesi − 1 (excluding our-
selves), must not perform a relay faster than 150ms; this is given by
the formula SlowRelaySelNodesi−1.

When these two conditions are met we will be able to assign the transaction
to the first originator, which will be node A; when they are not, we will not
assign it due to the low ∆t. The probability of meeting the two conditions
and thus being able to assign the transaction is obtained by the formula:

∞

∑
i=1

NoSleepi · Seli · SlowRelaySelNodesi−1

We now consider a situation where none of our Bitshark nodes is connected
to the node A, creating and relaying a transaction. In this case it is obviously
impossible to correctly assign the transaction, as our chance of being selected
is zero and we will never log any originator entry coming from A. We want
to see how likely it is that we assign the transaction to the wrong entity, due
to the delay between the first and the second originator being larger than
our ∆t limit. There are three main false positive possibilities:

• Every node that has been selected before the loop sleep, SelNodes,
doesn’t perform a relay faster than 150ms, except for exactly one which
has an exceptionally quick total relay time, lower than 10ms. This
would lead to a time difference between the first and second origina-
tor of more than the ∆t limit, causing the assignment of the transaction.
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• A single node is selected to receive the inv at the very first loop itera-
tion, after that the loop sleeps and other nodes with high link delays
are selected. Or, after the first loop sleep, no node could be selected
(except the same previous node as trickle node), and the loop could
then sleep again and again, until eventually other nodes are selected
and will relay the transaction causing a high ∆t measurement.

• Node A is connected to an exceptionally small number of peers, caus-
ing the probability of the previous case to rise. This would also mean
an increased chance of few nodes having very different link delays,
thus leading to a high ∆t in many situations.

Many other combinations of choices of nodes, link delays, and loop sleeps
are of course possible; the possibility of them happening, as well as for the
ones presented, has not yet precisely been calculated as it depends on many
factors, but is estimated to be very unlikely.

False assignments can of course also happen in the previous scenario, when
we are actually connected to the real node creating the new transaction. The
cases are similar to the ones presented in the previous paragraphs, with the
additional condition that we should not get any inv message from the real
source node for a long period of time (or it would cause ∆t to be too small),
thus making them even more difficult to happen.

SPV clients generating and broadcasting transactions5 are easy to identify as
source of transactions: since they never relay any transaction not originating
from them, they can then be selected as real originators if and whenever
they appear in the originator list. At the same time, in the case we are not
connected to a SPV node which creates a new transaction, if said node has a
decent amount of peers, it is easy to avoid false positives as half of its peers
will receive the new transaction at the same time and will begin relaying it
to their peers (which very likely include us).

In the real-world experiments we have noticed a slightly reduced probability
of assigning transactions, this is due to the fact that inv messages’ arrivals
and log times can be “distorted” by sleeping times and computationally ex-
pensive operations being run on the workers; someone with more resources
at their disposition wouldn’t have this issue.

Chart 6.3 presents the assignment probability values for the common sce-
nario where we are connected to a full node creating and relaying a new
transaction; we show the obtained values with said node connected from 1
to a maximum of 125 peers (the default limit in the default client code).

5 Even though it’s a known fact that a big part of the Bitcoin users connect through SPV
clients, we encountered few such nodes online at any time during our measurements; also,
the percentage of transactions created and broadcasted by them was almost insignificant.
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Figure 6.3: Transaction assignment probability when connected to its source node.

The results vary depending on the number of connections on the remote
node and the two probabilities of being selected to receive an inv message
due to the two different Bitcoin Core versions. We consider the chances
of succeeding in assigning transaction quite significant depending on the
situation, and we will show the practical results and effects of the created
links between transactions and entities in our upcoming analyses.

It should be noted that the previous assignment probabilities are related to
the fact we have a single connection to the source node, as it’s the case of
our Bitshark system. We force our clients to be organized and keep at any
time one connection to any node, to avoid interfering too much with the nor-
mal network behaviour. Malicious entities could easily have more resources
and/or focus on specific IP addresses, using different addresses to maintain
multiple connections with other nodes: the chances of assigning transactions
originating from the connected nodes can then drastically increase.

6.3 Analyser

The analysis of the data logged by Bitshark is done on a separate server
(5.1.6), which contains a copy of the relevant database information synchro-
nized with the middleware and has all its computational resources available
to run the needed analysis software (CPU an memory intensive).

Analyses are performed on specific data registered in a certain time window
by the Bitshark clients, the objective is to estimate the size of the “hiding set”
for a group of randomly sampled Bitcoin addresses taken from an initial
time period and see how it evolves over time considering more information.
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The hiding set represents the pseudonymity level of the system: an address
A can “hide” (only) between all the addresses in its set, meaning we cannot
say which other addresses in the set are unrelated to A. Ideally for any
address this set should be equal to all the addresses being observed in the
environment during the measurements, meaning we can’t infer anything
about all other addresses; in practice we observe it’s much lower than that,
signifying a pseudonym system with privacy risks.

While many other works about Bitcoin worried about merging groups of ad-
dresses together and displaying the relations between them [Rei11] [And12]
[Mei13] [Obe13] [Ron13], we (in addition to that) try to combine informa-
tion about related addresses with newly found data about unrelated ad-
dresses. This kind of approach allows us to estimate privacy in the Bitcoin
system, measured as the amount of addresses available to hide into, ob-
tained by eliminating from all the observed addresses (the ideal hiding set)
all the ones which we are sure are unrelated to the considered address.

6.3.1 Software Description

The analysis program and its utilized heuristics are the main part of this
thesis, as previously mentioned its purpose is to go through transaction and
entity data logged by the Bitshark workers and estimate hiding set sizes for
a random sample of Bitcoin addresses. The hiding set measurements are
done at different intervals during a certain chosen time window, to show
how this information changes over time as we consider more addresses and
newly found related or unrelated data about them.

While the software doesn’t directly deal with data stored in the blockchain,
Bitshark thanks to its connectivity will implicitly log everything (transaction-
related) that would be contained in the chain in the considered time period,
with the addition of other transactions and thus addresses that could be lost
if only the data stored in the blockchain would be observed.

An experiment performed through the Analyser software begins with the
definition of the time window being considered,6 all the transactions and
their addresses logged between the limits will be inspected by the utilized
heuristics and (if possible) assigned to an entity. In the initial phase of the
program a random sample of addresses is chosen: the Analyser will estimate
the hiding set size for each of them. Going forward in time, an increasing
amount of data is considered at every step, incrementing the amount of
information about related or unrelated addresses being found.

6 In our performed experiments the time period is of one or two weeks.
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Each information (heuristic) we use creates “related” or “unrelated” links
between addresses depending on the given data (6.3.2). To obtain a final
estimation (at every step) for the hiding set size, all the different generated
links are considered and combined as explained in 6.3.3, the set size is then
given by the total number of addresses observed so far minus the known
unrelated addresses for the considered sample.

It has to be noted that for the majority of the addresses the hiding set can-
not be reduced by a considerable amount, our capabilities of doing so by
inferring their unrelated addresses depend directly on being able to assign
a transaction, where they first are used as inputs, to an entity, or perform
the same operation on one ore more related addresses.

The sampled addresses are chosen at random among the ones we know are
assigned to at least a transaction in the initial period of the time window
being considered, the results are then shown for those addresses. In our
results we will present the percentage of transactions we manage to assign;
this value can then also be directly used to know the percentage of total
addresses for which our hiding set measurements are valid: considering the
fact that the assignments only depends on network factors and not by what’s
included in transactions, the number of addresses for which the results ap-
ply is given by the same percentage.

It should be mentioned again that the percentage of transactions we manage
to assign highly depends on our connection behaviour. We behave “nicely”
with other Bitshark clients, maintaining overall a single connection to each
peer, thus obtaining the assignment percentages mentioned in the previous
chapter. The obtained results for the hiding set sizes and thus the privacy
(pseudonymity) level provided by Bitcoin can then be seen as higher, opti-
mistic bounds. More aggressive and malicious entities are free to maintain
multiple connections with any wanted node; this would result in increased
transaction assignments, less false positives and more information being
available to analyse, leading then to reduced hiding set sizes.

6.3.2 Utilized Information

There are three possible type of relations between any couple of Bitcoin
addresses: unknown, related, unrelated. The Analyser software uses multi-
ple heuristics, combined as described in the next section, in order to better
decide which is the most probable situation. These heuristics consider dif-
ferent known facts and properties of transactions and users of the network,
in order to give information about addresses depending on the given infor-
mation. We use three heuristics that can tell when two addresses are related,
and another three, depending on the assignment of transaction to entities,
that can give new important information about unrelated addresses.
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Related: Common Transaction

This heuristic was originally proposed in the first known paper that tried
to associate Bitcoin addresses together in different entities [And12], there
presented as “Heuristic I”. This simple yet very strong heuristic assumes
that, if multiple addresses appear together as inputs in a valid transaction,
then said addresses are related to each other (belong to the same entity), as
the user signing the transaction must posses private keys for all the used
addresses. Even though it can happen due to special transaction mixing
(3.5) that we falsely associate addresses, this happens extremely rarely.

Addresses used as inputs in the same transaction are related.

Related: Common Bloom Filter

Bloom filters are used by SPV clients (3.3) to indicate the transactions they
are interested in and would like to receive, this is usually done by inserting
in the filter the addresses owned by the user of the client. Bloom filters are
a container with possible false positives when checking for contained ele-
ments; users can choose different levels of privacy by setting higher false
positive chances, at the cost of more uninteresting transactions received.
However most of the default clients use very low false positive rates, mak-
ing it possible to infer, through an analysis of the amount of data estimated
to fit in the filter, if matched addresses are related together. To estimate the
number of elements in a filter we use the formula derived from [Swa07]:

−s · ln (1− b/s)
h

Where s is the size of the filter in bits, b are the bits set to one, and h is the
number of times the hash function is applied when inserting elements in the
filter. The filter is deemed usable if the result is below a certain threshold.

Addresses in the same bloom filter with a low enough false positive rate are related.

Related: Common Entity

One of the innovations presented in this work is the possibility of assigning
transactions to entities: nodes connected to the Bitcoin network (and to us).
An entity is by definition a user of the system utilizing a client to send
and receive messages in the network, we can then infer that if multiple
transactions are assigned to the same entity, then the addresses contained in
any of the transactions will be related to the addresses contained in all the
other transactions assigned to said entity. This assignment makes it possible
to have new heuristics based on entity characteristics and allowing to find
unrelated addresses, as presented in the next paragraphs.

Input addresses in transactions assigned to the same entity are related.
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Unrelated: Entity Online Periods

We can be very confident that a user utilizing Bitcoin doesn’t use multiple
devices (and thus nodes) to access the network at the same time. If we ob-
serve any two entities that share some online time (by being both connected
to our system), then we can assert that the two entities are different and
unrelated. All addresses used as inputs in the transaction(s) assigned to the
first “conflicting” entity are unrelated to the ones of the second entity. As
the Bitshark system logs the online times of all the connected entities, it is
possible to build a kind of timetable allowing to find these conflicts.

Input addresses in transactions assigned to an entity which has overlapping online
time with another entity are unrelated to the latter’s addresses.

Unrelated: Country Origins

We believe that in the majority of cases Bitcoin users stay inside the same
country while using their money. Of course there are known exceptions and
people travel to different places, especially if we consider long periods of
time, depending on the considered time period this heuristic could be more
or less accurate. If we observe two entities, with their assigned transactions
and addresses, from two different countries, then we can assume their ad-
dresses are unrelated. Thanks to the IP addresses logged by Bitshark we are
able to assign a country reliably to almost all the encountered entities.

Input addresses in transactions assigned to an entity connected from a country
different from the one of another entity are unrelated to the latter’s addresses.

Unrelated: Client Versions

Users of the Bitcoin system can use multiple, completely different clients;
however very commonly there’s a certain behaviour that can be observed:
the same user will run, over time, the same or a newer version of the same
client. We can then infer that if we observe a transaction that gets assigned to
an entity which has a certain client version, and later on another transaction
is assigned to another client with the same client but an older version, then
it is very likely they are different and unrelated entities. As every node
connecting to each other in the Bitcoin network must advertise its personal
information through a version message before being able to send or receive
anything else, by logging the given client name and version through Bitshark
we know most of the clients used by all connected entities.

Input addresses in transactions assigned to an entity using a certain client with a
given version number newer than the one used by another entity connecting later
in time are unrelated to the latter’s addresses.
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6.3.3 Information Combination

We now have this group of heuristics that can be used to give information
about what kind of link there is between any two addresses, but how can this
different (possibly conflicting) data be combined and merged? We wanted to
build a system that could also be easily used for future new heuristics: they
should be easy to add and integrate to possibly improve results or correct
mistakes done by other heuristics.

The analysis software uses what we call a “double matrix” approach, where
two (triangular) matrices7 are used to represent respectively the related and
unrelated links. The columns and rows of the matrices are all the addressed
observed in the currently considered time window, the value found at the
intersection of two different addresses gives the value of the related/unre-
lated link, depending on the observed matrix; like in an adjacency matrix.
We utilize a value system where zero stands for an unknown link (matrices
are initialized to zero), negative values mean unrelated addresses, while pos-
itive values stay for related addresses, larger positive or negative numbers
signify a higher confidence in the link information.

Each of the heuristics has a different weight assigned to it, positive for
related addresses and negative for unrelated addresses, the distance from
zero increases with the confidence we have in the heuristic’s results. The
first three heuristics, dealing with related addresses, will only interact with
the first matrix, while the other three heuristics, dealing with unrelated ad-
dresses, only with the second matrix. Each time one of the heuristics needs
to add a single piece of information, address A and B are related/unrelated,
the respective entry in one of the matrices is increased by the fixed weight
assigned to the heuristic. The first matrix will then only have values in the
range [0, ∞[ while the second one in the range ]−∞, 0].

The weights assigned to our used heuristics are based on rough estimations
of how effective and precise they are at recognizing related/unrelated links;
experiments aimed at finding the ideal values based on large real-world data
would be interesting to perform in the future. The following list gives the
weight numbers used in our experiments presented later on.

• Common Transaction: 12
• Common Bloom Filter: 8
• Common Entity: 8
• Entity Online Periods: -8
• Country Origins: -5
• Client Versions: -8

7 In this document the “matrix” structure is used to more easily illustrate the different con-
cepts; in the code adjacency lists are used for memory and performance reasons.
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As previously mentioned we start with the two structures initialized to zero,
as we get more and more information the heuristics will modify the values
stored in the matrices, storing what we call the “direct” related/unrelated
links between addresses. Before being able to draw a conclusion on which
addresses are unrelated to any address A and thus find its hiding set size we
must find “indirect” links combining data from both the matrices. This is a
computationally intensive procedure which is only done for the addresses
we are interested in during our analysis. The estimated type of link between
A and any other address B will then be given by:

γ ·M1(A, B) + δ ·M2(A, B)

With γ and δ being fixed values chosen depending on the utilized heuristics
and their weights. In our experiments, 1 is used for both of them.

Indirectly Related and Unrelated Addresses

To begin with, the indirectly related addresses of A are found; this is done
by doing a Depth-first search8 starting from A’s known related addresses:
we recursively go through (related) neighbours and store any newly found
address which is indirectly related to A. For every address C ( 6= A) related
to a previously explored address B ( 6= A) we will modify the first matrix as:

M1(A, C) = max (M1(A, C), min (M1(A, B), M1(B, C)))

Meaning the new indirectly related address link has a strength given by the
minimum between the two known links A-B and B-C; we will then keep “the
strongest” known address relation between A and C.

There are two ways for an address D to be indirectly unrelated to A: D is
unrelated to an address indirectly related to A, or D is related to an address
directly/indirectly unrelated to A. We must consider both cases (plus the
already known directly unrelated addresses already present in the second
matrix) to find the total unrelated addresses of A.

For the first case, once we found A’s indirectly related addresses we will go
through all of them and get their unrelated addresses, for each address B
indirectly related to A and for each address C unrelated to B we will set:

M2(A, C) = min (M2(A, C), f (A, B, C))

Where f (X, Y, Z) is a function accepting three addresses, with X related to Y
and Y unrelated to Z. The function will return a value for the unrelated link
between X and Z which will be in the range [0, M2(Y, Z)], proportionally to
M1(X, Y); meaning the stronger the relation between node X and Y is, the
8 The DFS graph traversal algorithm: http://en.wikipedia.org/wiki/Depth-first search.

67

http://en.wikipedia.org/wiki/Depth-first_search


Data Analysis Analyser

higher the value of the unrelated link between X and Z will be, based on the
unrelated link between Y and Z. We use the following function:

f (X, Y, Z) =
M2(Y, Z)

max
(

1, α−M1(X,Y)
β

)
Where α and β are fixed values that need to be set depending on the amount
of used heuristics and the chosen heuristic weights. In our experiments, the
constant α is set to 16, while β has a value of 2.

For the second case we iterate through A’s unrelated addresses, these in-
clude the indirect ones in the first case. For each unrelated address B we
find its indirectly related addresses as described in the initial paragraphs,
for every address C related to B we then can set:

M2(A, C) = min (M2(A, C), f (C, B, A))

We utilize the same previously described function to obtain an unrelated link
between A and C, in the range [0, M2(A, B)] and proportionally to M1(B, C).

Once these steps for finding the indirectly related and unrelated addresses
for an address A are completed, its total amount of unrelated addresses can
be obtained by merging the known information and checking the link with
any other address B through the previously given formula:

γ ·M1(A, B) + δ ·M2(A, B)

Figure 6.4: Possibilities for indirectly related and unrelated addresses for address A.

Figure 6.4 shows the previously explained possibilities for indirectly related
(top) and unrelated (bottom) addresses. Black lines show the already known
directly related and unrelated addresses present in the matrices, green lines
show the newly found indirect ones with their relative formulas, given in
the same order as they were presented in the previous paragraphs.
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6.3.4 Program Flow and Structure

We will now describe how the Analyser software works step by step, what
are its inputs and outputs and what are the different parts responsible for
the resulting hiding set estimation.

The program is set to automatically connect to the local MongoDB instance
to retrieve Bitshark’s logged data, various parameters are coded inside the
program and cannot be chosen at runtime, but this can of course easily
be changed in the future. As arguments the Analyser takes first of all the
time window being considered for the experiment, secondly the initial time
window in which the sampled addresses are chosen, thirdly the size of the
steps to perform until the end of the experiment is reached. At every step
the software will add and consider more data as it progresses in time; the
hiding set sizes for all sampled addresses are calculated and logged for each
step until the end of the experiment is reached.

The steps’ size is defined in terms of transactions successfully assigned, as
the information added about related/unrelated addresses greatly varies over
time. Using this type of measurement unit allows us to roughly estimate
the direct and indirect information getting added to the matrices and to
get steps of equal “importance”, performing the repeated computationally
intensive operations only when needed.

The Analyser keeps track of resource usage and statistics about data and
heuristics for every step; as more and more information is considered to
calculate hiding set sizes, time and memory consumptions increase. As
we will see in the next chapter, on average after an analysis of less than a
couple of days worth of data the system quickly runs out of memory, and
experiences a very fast increase in the computation time needed at every
step, following a steep exponential growth. To avoid this and allow us to
analyse longer periods of data the program is set up to regularly purge
(tentatively) unneeded data, leading to slightly worse result and a loss of
precision, but making memory and time stay under control for experiments
dealing with data logged for long periods.

At the end of an experiment the Analyser will have provided a log con-
taining statistics about the experiment run; containing for each step the en-
countered transactions, transaction assignments, entities, entries added to
the matrices by the different heuristics, and resources used. For every step
a different result file is generated, inside it one can find the hiding set sizes
for each of the sampled addresses.

Pseudocode

We will not describe in more detail what the Analyser does during its exe-
cution, by providing a simplified pseudocode of the whole program and an
explanation of its most important functions being used.
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The overall structure of the program can be resumed as follows:

while(!experiment_end)

while(!enough_assigned_transactions)

extract_data_from_db()

if(first_step)

select_sampled_addresses()

store_direct_info()

find_indirect_info()

store_permanent_data()

purge_unneeded_data()

save_hiding_set_size()

We will now describe the objectives and results of the different functions:

• extract data from db: Queries the database for the next potentially
assignable transaction in order of time, checks to see if the transaction
can be assigned to the first originating entity, stores information about
addresses, transaction and entities in local collections used later on.

• select sampled addresses: Randomly selects the addresses that will
be sampled for the rest of the experiment, choosing between the ones
contained in all assigned transactions up until now.

• store direct info: Goes through the previously populated collections
with the utilized heuristics; the generated “direct” information is stored
in the two matrices for related and unrelated addresses.

• find indirect info: Performs the operations described in section 6.3.3,
going through the entries in the matrices for the sampled addresses
and finding all the indirectly related and unrelated addresses. This
function is the main reason behind the high time and memory costs.

• store permanent data: Stores data about unrelated addresses in a spe-
cial collection which will be never modified by the memory purges.
Each sampled address will have a list of addresses which we, at the
moment, think are unrelated; this can be modified over time.

• purge unneeded data: The matrix pair is always reset; when a mem-
ory purge is needed, we also remove from the local collections any
data not related to the sampled addresses or that was logged a certain
amount of time before the current point in time of the experiment (and
not part of the information stored during the first step).

• save hiding set size: By looking at the information stored in the per-
manent collection, save in a new file the measured hiding set sizes for
the sampled addresses at the current time of the experiment (step).

The next chapter will go into more details about some of the utilized param-
eters, as well as present the results of the Analyser in different situations.
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Experiments

In this chapter practical results of the Analyser software will be presented:
the program has been given multiple sets of data coming from different time
periods where the Bitshark system has been left running, logging the data
coming from the Bitcoin network interaction.

In section 7.1 the set-up of the presented experiments is described, explain-
ing which data and time periods are used and why, plus some statistics
about the encountered connections with other peers; in section 7.2 the ac-
tual analysis results are presented, together with considerations and reports
about the software and the performance of the analysis process.

7.1 Set-up and Connections

The Bitshark system is capable of running continuously, logging more and
more data while the Analyser software works in parallel, analysing data
in real time or concentrating on a previously registered time period. We
present a series of experiments that give results for a time period of one
week of data; multiple unrelated time periods have been scrutinized, to show
how the results are similar and repeatable in different scenarios. In order
to have comparable conditions for all the experiments, Bitshark has been
manually restarted each time; the logged data which is then considered for
the experiments is taken once a considerable number of connections has
been established, after a small initial build-up period of a couple of hours.

Chart 7.1 shows the number of connections that can typically be observed
after the Bitshark system is started, the data being analysed during the pre-
sented experiments begins 2-3 hours after the initial boot.

The outgoing connections rise very quickly to an almost constant value; this
is due to the list of IPs being given by the middleware to the workers, which
rapidly try to connect to all old and new addresses. The incoming connec-
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tions increase slowly over time, as our addresses are spread and discovered
in the Bitcoin network and more new clients connect to us when needed.
The large daily oscillations are due to the number of users utilizing Bitcoin:
we can see the effect of a global system and the influence of the time of the
day. The small 2-hours peaks in the outgoing connections during the ini-
tial phases are caused by the frequency at which workers retry previously
disconnected clients. It can be observed how on average during the whole
experiment we have 7’000 outgoing and 2’000 incoming connections.

Figure 7.1: Typical connection behaviour over time of the Bitshark system.

Figure 7.2: Online time distribution for nodes connected to Bitshark (excluding bots).
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As seen in section 5.2 the Bitshark system connects to several different client
types, with the majority of them being automated bots, not relaying any
transaction and only remaining connected for a very short amount of time.
Chart 7.2 shows the measured time “normal” nodes remained connected to
us during the various experiments. As both us and the remote clients don’t
usually disconnect in normal situations (no one is misbehaving) once the
connection is established, the measured times closely correspond to the time
nodes were really online in the network. We can appreciate in general a long
online permanence of many clients; the more they remain online, the more
information can be extrapolated through our heuristics for the analyses.

7.2 Results and Observations

We will now present the result of our Analyser software, looking at three
different windows of data of one week. For each of them a random group of
addresses is decided to be sampled as explained in section 6.3.4. By looking
at an increasing amount of data logged as time passed we then, step after
step, build a graph of related and unrelated addresses; in order to finally
obtain the hiding set size, representing the pseudonymity (privacy) level.

7.2.1 Resource Usage

Figure 7.3: Experiment 1 – Time and memory (RAM) usage of the Analyser software.

We begin by showing in charts 7.3, 7.4 and 7.5 the memory and time re-
sources utilized by the Analyser software over the course of the three exper-
iments. In all cases it can be observed how the time needed for each step
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rapidly increases; this is due to the logical exponential increase in related
and unrelated addresses to be found, as more information is considered.
The variation between experiments is given by the fact that, depending on
what was logged, less or more information can be inferred about the sam-
pled addresses, causing a chain reaction affecting the current and subse-
quent resources needed for the analysis of the data.

Figure 7.4: Experiment 2 – Time and memory (RAM) usage of the Analyser software.

Figure 7.5: Experiment 3 – Time and memory (RAM) usage of the Analyser software.
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The spikes are caused by the memory purges done by the program: the time
keeps going up as we get more data until some is erased, after that the usage
goes down, to then rise again in cycles. Our software has not been particu-
larly optimized, we don’t exclude that improvements could be done about
its computational performance. Memory can be seen to rapidly increase,
then going up following a terraced behaviour. This is again due to memory
purges, which causes part of the considered data to be deleted; the OS for
performance reasons leaves the memory still assigned to the program, to be
then filled again over time. We believe that memory usage increases so fast
due to memory fragmentation, as the actual occupied memory should theo-
retically be less (although still increasing over time), further measurements
and optimizations should be made in the future for longer analysis periods.

Figure 7.6: No data purging – Time and memory (RAM) usage of the Analyser software.

Initially the Analyser didn’t purge any data at all; however, after the execu-
tion however of analyses considering longer and longer periods of time, it
became clear that, unless a vast amount of resources and optimizations were
found, compromises had to be made. Chart 7.6 shows the resource usage
of the software if run without any kind of limit and never discarding any
type of information; note that after less than one day worth of data memory
usage surpasses the available RAM on our machine (32 GB) and causes the
program to crash, while the time needed for each step also reaches high val-
ues in an exponential way. Performing data purges allows us to keep both
time and memory needed under control, while obtaining results that differ
less than 2% in our measurement tests performed on a time-limited amount
of information where no data is erased over time.
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7.2.2 Heuristics’ Contribution

During the analysis process we recorded the amount of links (related or
unrelated addresses) that have been affected by the different heuristics over
time. It is difficult to say if one is more important than the others due to the
synergy that can be found between them: even though some bring larger
numbers of relations, others can be as effective by forming few but very
important links. Nevertheless we think that it’s important to know at least
the raw numeric contribution that each of the different heuristics provides
and how it helps to arrive to our final results.

Figure 7.7: Experiment 1 – Heuristic contribution in terms of links (address couples).

Figure 7.8: Experiment 2 – Heuristic contribution in terms of links (address couples).
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Charts 7.7, 7.8 and 7.9 show the contribution of the six utilized heuristics as
number of address couples (links, related or unrelated addresses), the three
heuristics for related addresses are shown in the blue hue, while the three
for unrelated addresses in the red hue. In all three experiments we can again
observe the spike behaviour given by the accumulations of information fol-
lowed by data purges. Note that the given related and unrelated values
given are only the “direct” links (45); many more links are then added by
finding and storing all the “indirect” relations.

Figure 7.9: Experiment 3 – Heuristic contribution in terms of links (address couples).

The bloom filter heuristic doesn’t seem to contribute many new relations to
the analysed data as the chart shows; despite the very low numbers, its con-
tribution could nonetheless prove itself important for the reasons previously
explained. We can note how in the third experiment we encounter and store
many related addresses thanks to the “common entity” heuristics. This is
most probably due to one or more entities being (temporarily) responsible
for a considerable number of transactions, or being identified as sources
of fewer transactions with many inputs. As presented in the next section,
this doesn’t seem to have a great effect on the final results in regards to the
measured hiding set size if compared to the other experiments.

To better display the actual contribution comparisons between the different
heuristics, charts 7.10, 7.11 and 7.12 show the percentages of related and
unrelated addresses links brought by the two groups of heuristics, utilizing
the same data as before. The percentages are calculated independently for
the two groups: related and unrelated links.

77



Experiments Results and Observations

Figure 7.10: Experiment 1 – Heuristic contribution percentages.

Figure 7.11: Experiment 2 – Heuristic contribution percentages.

We can observe how (especially for the first two experiments) for the related
addresses we have an initial greater contribution by the “common entity”
heuristic, with the rest almost completely taken by the “common transac-
tion” heuristic; after some time the situation reverses and seems to remain
stable. For the third experiment this behaviour appears to be delayed but
can slowly be observed as well. The contribution of unrelated addresses
is very stable; the results are similar for all our tests and show that the
“conflicting online time” heuristic brings the most links, followed in order
by “conflicting country” and “conflicting client version”. The spikes due to
data purging are obviously still visible throughout all the charts.
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Figure 7.12: Experiment 3 – Heuristic contribution percentages.

7.2.3 Hiding Set Size

We finally present the main results of our work: for all the sampled ad-
dresses we show the measured hiding set size; the set, as previously ex-
plained, contains all the elements an address can “hide” into, while the other
addresses outside the set are found to be unrelated. In order to have good
pseudonymity and thus privacy it would be optimal for the set to contain
all the observed addresses, this is however not the case with Bitcoin.

Figure 7.13: Experiment 1 – Hiding set size with observed addresses.
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In charts 7.13, 7.14 and 7.15 it is possible to observe our estimation of the
hiding set size step after step for the three experiments, as more data is con-
sidered. We present the minimum, maximum and average measurements
from all the sample addresses, together with the total amount of addresses
that was observed up to that point in time.

Figure 7.14: Experiment 2 – Hiding set size with observed addresses.

Figure 7.15: Experiment 3 – Hiding set size with observed addresses.
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An almost identical behaviour can be seen in all the experiments: a growth
in observed addresses together with hiding set estimations following with a
similar increase. A gap between the total addresses (optimal privacy value)
and the estimated hiding set can be observed and would seem to maintain
proportions over time. Hiding set measurements all lie very close between
each other, with a small difference between minimum and maximum and
the average almost at the same level of the minimum (worst privacy value).

Charts 7.16, 7.17 and 7.18 show the same data, but with the hiding set size
estimation expressed as percentage of the addresses observed up until that
point in time; we plot again the minimum and maximum values, together
with the average of all values and the standard deviation.

Figure 7.16: Experiment 1 – Hiding set size as percentage of observed addresses.

Again we can observe similar behaviours: in all the experiments we can
notice how the hiding set size starts “high” at around 70-75%, we then have
a rapid descent during the first twelve hours of data, some fluctuations and
then a phase of relative stability that seems to continue in the future with
minimums of 65-70% and maximums of 70-75%.

We can see that that a bottom “worse” value is obtained in the initial phases
of the week, and that the value ranges start very closely together and then
slowly separate over time, reaching a separation of few percentage points by
the end of the week. The average always stays really close to the minimum,
with the standard deviation slowly rising as the experiment progresses.
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Figure 7.17: Experiment 2 – Hiding set size as percentage of observed addresses.

Figure 7.18: Experiment 3 – Hiding set size as percentage of observed addresses.

For testing purposes we tried running the Analyser not with the custom
weights for the heuristics explained in section 6.3.3, but with constant values
of 1 for the first three (related addresses) and -1 for the others (unrelated
addresses); to see what differences (if any) it would bring to our results.
The outcome for the hiding set size can be seen in charts 7.19 and 7.20, to
be compared with the previously shown third experiment results.
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Figure 7.19: Experiment “same weights” – Hiding set size with observed addresses.

Figure 7.20: Experiment “same weights” – Hiding set size as percentage of observed addresses.

We can observe how doing this results in minimum values that are iden-
tical to the previous experiment, the difference from the maximum values
is however large since the beginning and grows over time, the maximum
values also show larger hiding set sizes. The average is now in the mid-
dle of the two limits, with a larger standard deviation, showing a different
distribution of the hiding set values.
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We believe these simple values cause conflicts between related and unrelated
addresses, resulting in unknown links; using values for the heuristics that
approximate their accuracy is an important part of the analysis process. We
can’t assert that our chosen values are the best or correct ones, as they were
simply picked following general ideas about the capabilities and properties
of the heuristics, and not found through calculations or extensive testing.
We believe that it will be important in the future to find a way to optimize
the weights for any old and new heuristic used in the Analyser.

Returning back to our original experiment results, what do they tell us? On
average during all the experiments we were able to assign to an IP slightly
over 22% of all the observed transactions, which translates to at least the
same percentage of addresses for which our hiding set sizes and conclusions
apply, without even considering their related addresses. For these addresses
the privacy provided by Bitcoin via the usage of pseudonyms (the addresses
themselves) is lacking: by passively listening to the network with limited re-
sources we were able in addition to finding their relations, to discard from
30% to 40% of all observed addresses as “unrelated” depending on the con-
sidered time period, thus drastically reducing the amount of addresses they
could hide into, diminishing their privacy and making possible a more de-
tailed analysis of their transfers and behaviour.

The analysis that we do on the logged data could be extended in the future
by new or improved heuristics and additional ideas to link addresses, thus
further reducing pseudonymity and privacy. The technique we use to assign
transaction to connected peers can also be used for other purposes, targeting
specific clients and revealing precisely the transactions and addresses they
are responsible for. We also know that a malicious entity would be free to
set up multiple connections with its targets, allowing a much more precise
identification of the victims’ relations and usage of bitcoins.

Even though Bitcoin doesn’t promise anonymity, we believe that work still
needs to be done to avoid these analyses and attacks on the privacy of its
users. We have shown how, with the current system, it’s possible to reduce
the pseudonymity level provided by the different addresses for an important
part of them, which thus in turn results in worse privacy guarantees.
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Conclusion

We will now conclude this thesis, starting with a series of possible improve-
ments on the Bitcoin protocol regarding privacy (8.1), and finishing with
considerations about the work that still needs to be done on the subject and
the future of research in this field (8.2).

Through the logging of data via the Bitshark system we passively registered
information about data being exchanged in the Bitcoin network. Via theoret-
ical calculations and practical measurements we have shown how it’s possi-
ble to assign Bitcoin transactions to real-world entities in different scenarios,
affecting the privacy of the system users. We developed and presented a
new analysis tool, capable of merging data coming from different heuris-
tics and building detailed information on the relations between Bitcoin ad-
dresses (pseudonyms). We used known and new heuristics to find related
addresses and we proposed innovative heuristics that bring info about un-
related addresses. By arriving at a series of estimations of the hiding set
size, it has been shown how the level of pseudonymity (and thus privacy)
provided at the moment by Bitcoin is not very good.

The presented results were obtained through a well-behaving software, Bit-
shark, which respected common behaviour in the Bitcoin network; from the
given calculations it has been shown how theoretically malicious entities
could obtain more information from the network, thus further reducing the
privacy provided by Bitcoin addresses to its users.

8.1 Bitcoin Improvements Proposals

We have shown through theoretical and practical results how it is possible
to assign transactions to connected peers in a decent percentage of cases;
thanks to this information it is possible to obtain data about unrelated ad-
dresses, thus undermining Bitcoin’s potentially full pseudonymity obtained
by being able to hide in all the observed addresses.
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We believe the current Bitcoin protocol could be improved, in order to de-
crease the chance of evil entities being able to perform transaction assign-
ments like we did, thus increasing the users’ pseudonymity level. In the
next paragraphs we will describe two possible modifications, all diminish-
ing assignment probability while at the same time not decreasing the speed
at which transactions are eventually transmitted through the network.

The node responsible for the creation of a transaction must of course send
an inv message to announce and broadcast it: sending it quickly to all con-
nected peers doesn’t solve anything and makes the transaction easier to
assign, while sending it to a very restricted number of neighbour clients
makes the assignment difficult, but at the cost of a slow broadcast of the
transaction over the network. Due to the core concept that the Bitcoin net-
work is peer-to-peer and fully decentralized, selecting only “trusted” nodes
for the broadcast could certainly not be considered as an improvement.

Our first proposal is related to the connections that a client in the Bitcoin
network has with its peers. As it is for now, nodes accept any incoming con-
nection and set up a minimum number of outgoing connections if needed,
without any particular selection criteria; this results in links with frequently
high delay as seen in previous measurements.

We believe that it would at the same time benefit the network and decrease
assignment probability if clients reserve a part of their outgoing connection
slots to peers with measured low link delays. All nodes should be connected
to a minimum amount of other nodes with low delay; these connections can
be selected over time by comparing times of the outgoing connections via
a series of Bitcoin pings. This method shouldn’t penalize too much nodes
with very slow internet connections, due to its application only to (part of)
the outgoing connections, and would bring numerous advantages.

The second proposal is aimed at modifying how the current protocol for
transaction relay works, in a way related to what has been already proposed
for blocks in [Dec13]. In the current protocol, before a node B, receiving a
transaction from another node A, can retransmit it to its other neighbours,
the series of messages inv → getdata → tx must happen between the two,
causing an important amount of time to pass before information can be
retransmitted, depending on the link delay. This procedure is followed due
to the fact that A can’t know if B already knows about the transaction, and
B must verify the validity of the latter by receiving the complete data before
retransmitting it to any of its peers.

We propose to modify the protocol by “pipelining” how transactions are
propagated through the network: a node B always begins broadcasting the
inv for a transaction immediately after the receipt of the relative inv from A
(in case it’s a new and unknown transaction for B), the receipt and verifica-
tion of the full transaction happens after it has already been announced to
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the peers. As transactions with the new method are not verified any more
before being announced to the next peer during the relay, it is possible that
attackers could use this to spam the network with inv messages for transac-
tions that will never be sent. Note however that a similar attack is already
possible with the current system, where an evil entity could simply create
an arbitrary number of (conflicting) transactions that get sent throughout
the entire network utilizing bandwidth; the limited size of an inv message
also shouldn’t cause much trouble. This proposal would result in much
faster propagation throughout the network for all transactions, and a low-
ered probability of assignment of transactions to nodes.

The presented ideas for improvements on the Bitcoin protocol shouldn’t en-
tail any drawback and, in addition to improve the situation regarding trans-
action assignments to IP addresses, would also help the performance of the
Bitcoin network. We feel that the implementation of each proposal, which
could be taken alone or combined, would benefit the current system.

8.2 Future Work

Our work has shown that the pseudonymity level provided by Bitcoin ad-
dresses is not ideal, we used a newly built analysis tool, looking at data
logged in a limited period period of time and building relation information
through a series of heuristics. We will not list a series of possible improve-
ments, additions and research that can be done in the future on the subject.

Our analyses and presented results all are done for what can be considered
“short” periods of times; this was done so due to time constraints on the
work and the necessity for multiple experiments. It would be interesting
to observe what would happen to the relations and the hiding set sizes by
logging and analysing data for much longer periods.

The developed Analyser software has not been extensively optimized for nei-
ther memory nor CPU usage; working on a faster and less memory intensive
program would bring better results for longer periods of time, requiring less
data purges. For the same objectives it would be desirable to also be able to
test the software on more advanced hardware.

The rules for the assignments of transactions at the moment don’t “automati-
cally” support SPV nodes: to obtain less (already rare) false positives and be
able to assign more transactions, the software could be modified to automat-
ically assign transaction to a certain SPV client if it appeared anywhere in
the originator list of a transaction, as these clients never relay transactions.

The Analyser program contains several different parameters related to the
used heuristics and how logged data is interpreted for the discovery of re-
lated/unrelated links between addresses. We believe that thorough testing
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for their correctness and optimality, if possible, would lead to more accurate
analyses and results that are more reliable than the current estimations.

New heuristics can (easily) be added to the Analyser software, leading to
better and more accurate results, further decreasing the obtained hiding set
sizes and showing more accurately the actual pseudonymity provided by
Bitcoin. It is also possible to find new ways to assign transactions to IP ad-
dresses. Two ideas are already known and could help to extend and improve
the current system: the “shadow” (change) address heuristic from [And12]
identifies and relates the change address of a transaction with the latter’s in-
puts, while through the concepts presented in [Kos14] it would be possible
to create an heuristic to assign transactions to IP addresses when some rare
non-standard relay patterns are observed.

The research remains open: new ways to infer information about related and
unrelated addresses can always be found and used together with previously
known data to reduce the privacy (via pseudonymity) of Bitcoin’s users.

Bitcoin has quickly risen to become the most successful cryptocurrency in
the world, it’s innovative and still in continuous development, it isn’t perfect
by all means, but it can be improved and built upon [Bar12] to obtain a bet-
ter system. We don’t know yet how the economy of the future will develop,
what we know is that Bitcoin offers new promising ideas, and work should
be focused on its development both in useful features and security; working
in this field now means thinking about the (crypto)currency of the future.

88



Glossary

51% attack – Situation where an entity (group) controls more than 50% of
the mining hashing power of the whole network, when this happens
this entity effectively controls all the blocks being added to the main
blockchain and can then control which transactions are accepted, roll-
back transfers of money and allow double spending attacks.

Address – Representation of the public part of an asymmetric key pair, of-
ten displayed as an alphanumeric or QR code, it is used in transactions
to indicate sources and destinations of bitcoins.

Altcoin – An alternative cryptocurrency to Bitcoin, Altcoins often are a fork
of the latter’s code base, they offer similar functionalities or additional
features and can work on the same or a different network.

Application-Specific Integrated Circuit – An hardware chip developed and
built to exclusively execute a limited set of tasks quickly and efficiently.

ASIC – See “Application-Specific Integrated Circuit”.

Base58 – An human-readable string representing binary data as a sequence
of letters and numbers, with the exclusion of certain symbols to ensure
visual uniqueness; it is used to represent Bitcoin addresses.

Bitcoin – The original digital currency as described by Satoshi Nakamoto
and then worked on by the community, “Bitcoin” (capitalized) can be
used to refer to the technology and code, while “bitcoin” (lowercase)
is used to indicate a unit of the currency itself.

Bitcoin Days Destroyed – Measure of the Bitcoin transaction volume, calcu-
lated for all transactions by multiplying the number of bitcoins trans-
ferred by the number of days that passes since they were last spent.
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Bitcoin Network – The peer-to-peer network composed of nodes running
the Bitcoin code and thus communicating through the known protocol.

Block – Data structure consisting of a header containing the reference to
the previous block and a proof of work (plus other information), and a
list of the transactions included in the block. Newly mined blocks are
broadcasted to the network, appended if valid to the current longest
blockchain; they must be referenced to by the next block.

Blockchain – Shared public ledger of all transactions ever done in the net-
work; it consists of a series of valid blocks, each referring to the previ-
ous one, containing a list and merkle tree hash of the transactions done
in that period of time. Miners and clients always look at the longest
block chain and ignore shorter chains (forks).

Blockchain Length – The length (or depth) of the blockchain is calculated
as the sum of the difficulties of all the linked blocks in the chain, the
main (valid) chain is the one with the highest length.

BTC – See “Bitcoin”.

Change – Part of the output of a transaction (optional) used to return bit-
coins to the sender; since all inputs are completely utilized in a trans-
action, change is used to handle the frequent cases where what is the
intended final payment doesn’t exactly correspond to the input sum.

Client – See “Node”.

Coinbase – Special type of input of a transaction which generates new bit-
coins and uses them as input in a transaction; the output(s) of the latter
are owned by the miner who discovered the block and who will thus
receive them as a reward for their work.

Deflation – Reduction of prices of goods or services over time due to a
supply of a product or service growing faster than the supply of a
currency, or due to the money amount being finite and decreasing;
people will spend less and hoard more money.

Depth – See “Blockchain Length”.

Difficulty – Number representing the difficulty of finding a new block; it
is calculated as the maximum possible target divided by the current
target. The target (and thus difficulty) is continuously adjusted after
every block to ensure regular mining of blocks over time.

Digital Signature Algorithm – Standard for digital signatures; an entity can
create related private/public key pairs: with the private key the entity
can sign any desired data, with the public key (available for anyone)
any other entity can check the signature and thus prove the authentic-
ity of the data in relation to the signing entity.
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Double spending – Family of attacks aimed at spending bitcoins from cer-
tain inputs multiple times; this can happen if an evil user is in some
way able to create two transactions containing the same subset of in-
puts, and making the victim accept one of them, while the other one
is the one really being included in the final accepted blockchain.

DSA – See “Digital Signature Algorithm”.

ECDSA – See “Elliptic Curve DSA”.

Elliptic Curve DSA – Alternative implementation of DSA, based on the al-
gebraic structure of elliptic curves over finite fields instead of discrete
logarithms; it brings shorter keys for the same security level and gen-
erally faster computations for signatures and verifications.

EWallet – Web service allowing a (trusting) user to store and manage his/her
private/public keys, currency amount, and transaction log on the web,
thus providing online Wallet functionalities.

Exchange – Web service providing users with the possibility of trading bit-
coins for other altcoins or even real currencies.

Fork – Split of the blockchain where different network parts see (and fol-
low) a different sequence of blocks from the fork; this usually hap-
pens when blocks with the same difficulty are mined and broadcasted
around the same time. The situation usually resolves by itself automat-
ically as more blocks are found and one fork becomes the longest and
is then the accepted main blockchain.

Genesis Block – The first (original) block in the blockchain, it contains hard-
coded data and serves as base for the creation of the next blocks in the
chain which recursively refer to the previous one.

Hash – Number obtained from a hash function for the given input data, the
generated number is deterministic and of fixed-length; a (secure) hash-
ing function is not invertible (one-way function), gives a completely
different result for any small change in the input, and is built to mini-
mize the probability of collisions.

Hiding Set – Set of Bitcoin addresses assigned to a specific address where
the latter can “hide” into, since we don’t know what relation exists
between them. The rest of the existing addresses that are outside the
hiding set are by definition known to be unrelated to said address.

Inflation – Increase of prices of goods/services over time due to a decreas-
ing value of money, causing people to spend more and hoard less.

Mempool – List of transactions kept by nodes which are not yet included
in the blockchain (unconfirmed), they are retained until they expire or
are included into a newly mined block.
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Merged Mining – Procedure through which a miner can, by selecting sev-
eral different cryptocurrencies that support it (plus Bitcoin), use the
hashes calculated for finding the solution to a Proof of Work for multi-
ple currencies at the same time; thus improving personal gains and se-
curity (due to increased total hashing power) for all the selected coins.

Merkle Tree – Tree structure where every non-leaf node contains the hash
of all its leaves; this type of structure allows for fast and secure verifi-
cation of the contents inserted in it.

Mining – The process of trying to find a valid hash (under the target) for a
new always updated node containing the latest transactions. Hashing
is done on the block header by continuously modifying various vari-
ables; as it is a random (lucky) process, the probability of finding a
new block is given by the speed at which the used machine performs
hashes. The reward for mining a new block comes in the form of the
included transactions’ fees and an initial single block reward.

Mining Pool – Service allowing multiple entities to collaborate and work
together on mining new blocks, as the hashing rate is summed and
the rewards are combined and distributed proportionally to the work
done, this allows for a steadier income for the miners.

Node – A node (client) is a device connected to the Bitcoin network running
some version of the Bitcoin program and thus able to receive, under-
stand and send messages following the protocol. Nodes usually per-
form the important operations of relaying or broadcasting valid data
and exchanging other information through the peer-to-peer network.

Nonce – Number or sequence of bytes (often chosen randomly) meant to be
used only once in a cryptographic communication or algorithm.

Orphan Block – Valid block which is however not linked to the current
blockchain, due to blocks referenced as “previous” being missing and
not currently known; is ignored until the unknown blocks are received
and validated. Blocks in the shorter chains are also called orphans.

Orphan Transaction – Valid transaction which contains at least an input re-
ferring to a previous transaction which is not currently known because
it was not yet received or invalid; is ignored until all the missing trans-
actions are received and validated.

PoS – See “Proof of Stake”.

PoW – See “Proof of Work”.

Proof of Stake – Alternative method to Proof of Work to protect the cryp-
tocurrency, for now it is used in conjunction with it in the Altcoins
utilizing it. With Proof of Stake the amount of currency you already
have proportionally affects the amount of new blocks you can mine.
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Proof of Work – A proof (usually a number) which is difficult to compute
and thus, when shown, demonstrates spent time and power on the
previously decided problem. In the Bitcoin world the Proof of Work is
the creation of a hash whose number is below a certain target.

Reward – Bitcoins that are awarded to the discoverer of the block (miner);
they are given in a special transaction at the beginning of the block.

Satoshi – Pseudonym of Bitcoin’s creator, and name of the smallest unit
(arbitrarily set in the code) in which bitcoins can be divided to execute
transactions: one bitcoin is equal to 100 million satoshis.

Scrypt – Password-based key derivation function; an algorithm, used in
cryptocurrencies as a proof of work, designed to be expensive in both
CPU cycles and memory needed, with the objective of making custom
hardware devices for its execution difficult and expensive to obtain.

SHA-2 – Set of cryptographic hash functions; currently they are the most
used functions in various applications and are seen as secure by the
community, with no known practical attack on their security.

Simplified Payment Verification – Client feature allowing nodes to verify
transactions without having to keep the whole blockchain updated, by
using block headers and bloom filters. It brings space and network
savings but makes the node more vulnerable to certain attacks.

SPV – See “Simplified Payment Verification”.

Target – Number (mask) representing the upper limit for a new valid block
hash; to higher targets corresponds a higher probability of finding an
accepted hash and vice versa. The target is continuously adjusted after
every block to ensure regular mining of blocks over time.

Transaction – Signed data describing the movement of bitcoins from a set of
input addresses to a set of output addresses; usually refers to previous
transactions indicating the balance of inputs. Transactions are broad-
casted over the network and, if valid, are included in the next mined
block and confirmed; additional future blocks increase confirmations.

Transaction Fee – Amount of bitcoins that the originator of a transaction
decides to pay to the miner that will include the transaction in a new
block (as incentive). It corresponds to the sum remaining after sub-
tracting the output amounts from the total inputs of the transaction.

TX – See “Transaction”.

Wallet – Application providing an interface to handle all the owned private
and public key pairs and manage lists of transactions; since bitcoins
are simply data recorded as part of a transaction in the blockchain, the
wallet’s purpose is to store and manage one’s addresses.
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A.1 MongoDB Document Examples

Transaction

{

"_id" : "4a4a38ea2d5d56b497a3278564fc0c91 \

b0e079b552e67537366fec423dd7de07",

"originators" : [

{

"id" : "1ce9c95f-3dd8-4b87-99fb-585613fd3df2",

"timestamp" : NumberLong("1398432432722")

},

{

"id" : "e62c8b71-876e-41fd-8168-bbaa1c4d933f",

"timestamp" : NumberLong("1398432433198")

},

{

"id" : "5d2cb1a9-7b20-49c8-90c7-7490f40dcd53",

"timestamp" : NumberLong("1398432433786")

},

{

"id" : "9eef8b2b-9bef-4b61-8dd8-817a6da21636",

"timestamp" : NumberLong("1398432433804")

}, (...)

],

"inputs" : [

"1FHbbjtLrqvMqHzYAecrsPRQbGKrejMNta",

"1AAhQXYLGDvaQxE72bQRpNioPY7xtfEDhP",

"1MPC7NHWNKLrnv4gxh9DJn38sAzucnwv6M"

]

}
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Entity (incomplete)

{

"_id" : "e5f7e870-dfd5-49c5-ba61-c2f4f5cd711c",

"ip" : "***.***.***.***",

"version_name" : "",

"version_number" : "",

"time_online_from" : NumberLong("1398633910312"),

"time_online_to" : 0,

"link_delay_minimum" : 1000

}

Entity (complete)

{

"_id" : "5118569c-a8f6-4928-8766-5a20ae6d5fc8",

"ip" : "***.***.***.***",

"version_name" : "Satoshi",

"version_number" : "0.9.1",

"time_online_from" : NumberLong("1398433397397"),

"time_online_to" : NumberLong("1398433828276"),

"link_delay_minimum" : 61

}

Bloom Filter

{

"_id" : "001000002801104480400110000800000101 \

100A1140A800004000000002020208000002 \

000000400000220062440004401040000030 \

20000184A1004040400101C40041809020A0 \

10000000600A80000000831A108000008000 \

010180200024000042041008001001002008 \

410048000001040002080000000008000608 \

A49800000009081000100040044608280002 \

081280000268480600120000000A80400201 \

001101000000000000880000000404000441 \

060020000A90100080004092080000001000 \

010000-0000000A-890ED400-02"

}
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A.2 Bitshark Protocol Functions

getIPs

Call:

{

"method" : "getIPs",

"nips" : 1000,

"workerid" : 1 // Zero here would mean we are a new worker

}

Answer:

{

"result" :

{

"timestamp" : 1404086400000,

"workerid" : 1,

"ips" : ["***.***.***.***", "***.***.***.***", (...)]

},

"error" : null,

"id" : 1

}

newIPs

Call:

{

"method" : "newIPs",

"ips" : ["***.***.***.***", "***.***.***.***", (...)]

}

Answer:

{

"result" :

{

"timestamp" : 1404086400000

},

"error" : null

}
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newLogs

Call:

{

"method" : "newLogs",

// Each call will have either one of the possible arrays:

// transactions/entities/bloomfilters

"transactions" : [

{

"_id" : "4a4a38ea2d5d56b497a3278564fc0c91 \

b0e079b552e67537366fec423dd7de07",

"originators" : [

{

"id" : "1ce9c95f-3dd8-4b87-99fb-585613fd3df2",

"ip" : "***.***.***.***",

"timestamp" : NumberLong("1398432432722")

},

{

"id" : "e62c8b71-876e-41fd-8168-bbaa1c4d933f",

"ip" : "***.***.***.***",

"timestamp" : NumberLong("1398432433198")

}, (...)

]

}, (...)

],

"entities" : [

{

"_id" : "5118569c-a8f6-4928-8766-5a20ae6d5fc8",

"ip" : "***.***.***.***",

"version_name" : "Satoshi",

"version_number" : "0.9.1",

"time_online_from" : NumberLong("1398433397397"),

"time_online_to" : NumberLong("1398433828276"),

"link_delay_minimum" : 61

}, (...)

],

"bloomfilters" : [

{

"_id" : "001000002801104480400110000800000101 \

100A1140A800004000000002020208000002 \

000000400000220062440004401040000030 \

20000184A1004040400101C40041809020A0 \

10000000600A80000000831A108000008000 \

010180200024000042041008001001002008 \

410048000001040002080000000008000608 \

A49800000009081000100040044608280002 \

081280000268480600120000000A80400201 \

001101000000000000880000000404000441 \

060020000A90100080004092080000001000 \

010000-0000000A-890ED400-02"

}, (...)

],

}
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Answer:

{

"result" :

{

"timestamp" : 1404086400000

},

"error" : null

}

newIncoming

Call:

{

"method" : "newIncoming",

"ip" : "***.***.***.***"

}

Answer:

{

"result" :

{

"timestamp" : 1404086400000

},

"error" : null

}

removeIP

Call:

{

"method" : "removeIP",

"ip" : "***.***.***.***"

}

Answer:

{

"error" : null

}
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A.3 Bitcoin Client Code Extracts

ThreadMessageHandler

Thread receiving and sending all messages from and to all connected nodes.

Code source: Bitcoin 0.9.1 - net.cpp

void ThreadMessageHandler ()

{

(...)

while (true)

{

(...)

// Poll the connected nodes for messages

CNode* pnodeTrickle = NULL;

if (! vNodesCopy.empty ())

pnodeTrickle = vNodesCopy[GetRand(vNodesCopy.size())];

bool fSleep = true;

BOOST_FOREACH(CNode* pnode , vNodesCopy)

{

if (pnode ->fDisconnect) continue;

// Receive messages

(...)

if (! g_signals.ProcessMessages(pnode))

pnode ->CloseSocketDisconnect ();

if (pnode ->nSendSize < SendBufferSize ())

{

if (!pnode ->vRecvGetData.empty () ||

(!pnode ->vRecvMsg.empty () &&

pnode ->vRecvMsg[0]. complete ()))

{

fSleep = false;

}

}

(...)

// Send messages

{

(...)

g_signals.SendMessages(pnode , pnode == pnodeTrickle);

}

(...)

}

(...)

if (fSleep) MilliSleep(100);

}

}
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SendMessages

Function called for all the connected peers (CNode* pto), responsible for
sending most of the network messages.

Code source: Bitcoin 0.9.1 - main.cpp

bool SendMessages(CNode* pto , bool fSendTrickle)

{

{

(...)

vector <CInv > vInv;

vector <CInv > vInvWait;

{

(...)

BOOST_FOREACH(const CInv& inv , pto ->vInventoryToSend)

{

if (pto ->setInventoryKnown.count(inv)) continue;

// trickle out tx inv to protect privacy

if (inv.type == MSG_TX && !fSendTrickle)

{

// 1/4 of tx invs blast to all immediately

static uint256 hashSalt;

if (hashSalt == 0) hashSalt = GetRandHash ();

uint256 hashRand = inv.hash ^ hashSalt;

hashRand = Hash(BEGIN(hashRand), END(hashRand));

bool fTrickleWait = (( hashRand & 3) != 0);

if (fTrickleWait)

{

vInvWait.push_back(inv);

continue;

}

}

// returns true if wasn’t already contained in the

set

if (pto ->setInventoryKnown.insert(inv).second)

{

vInv.push_back(inv);

if (vInv.size() >= 1000)

{

pto ->PushMessage("inv", vInv);

vInv.clear ();

}

}

}

pto ->vInventoryToSend = vInvWait;

}

if (!vInv.empty ()) pto ->PushMessage("inv", vInv);

(...)

}

return true;

}
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ProcessMessages

Function called from the client whenever a new message is received from a
peer node (CNode* pfrom), responsible for reacting to messages.

Code source: Bitcoin 0.9.1 - main.cpp

bool static ProcessMessage(CNode* pfrom , string strCommand ,

CDataStream& vRecv)

{

(...)

else if (strCommand == "inv")

{

vector <CInv > vInv;

vRecv >> vInv;

(...)

for (unsigned int nInv = 0; nInv < vInv.size(); nInv ++)

{

const CInv &inv = vInv[nInv];

boost:: this_thread :: interruption_point ();

pfrom ->AddInventoryKnown(inv);

bool fAlreadyHave = AlreadyHave(inv);

(...)

if (! fAlreadyHave)

{

/* AskFor queues the "getdata" request , which

is later processes by the SendMessages function */

if (! fImporting && !fReindex) pfrom ->AskFor(inv);

}

(...)

}

}

else if (strCommand == "getdata")

{

vector <CInv > vInv;

vRecv >> vInv;

(...)

pfrom ->vRecvGetData.insert(pfrom ->vRecvGetData.end(),

vInv.begin (), vInv.end());

/* ProcessGetData immediately sends a "tx"

answer to the peer if the request is valid */

ProcessGetData(pfrom);

}

(...)

102



Bitcoin Client Code Extracts Appendix

else if (strCommand == "tx")

{

(...)

CTransaction tx;

vRecv >> tx;

CInv inv(MSG_TX , tx.GetHash ());

pfrom ->AddInventoryKnown(inv);

(...)

if (AcceptToMemoryPool(mempool , state , tx, true ,

&fMissingInputs))

{

(...)

/* TODO: comment RelayTransaction

Bla */

RelayTransaction(tx , inv.hash);

(...)

// Recursively process any orphan transactions

// that depended on this one

for (unsigned int i = 0; i < vWorkQueue.size(); i++)

{

uint256 hPrev = vWorkQueue[i];

for (set <uint256 >:: iterator mi =

mapOrphanTransactionsByPrev[hPrev ].begin ();

mi != mapOrphanTransactionsByPrev[hPrev ].end();

++mi)

{

const uint256& orphanHash = *mi;

const CTransaction& orphanTx =

mapOrphanTransactions[orphanHash ];

(...)

if (AcceptToMemoryPool(mempool , stateDummy ,

orphanTx , true , &fMissingInputs2))

{

(...)

/* TODO: comment RelayTransaction

Bla */

RelayTransaction(orphanTx , orphanHash);

(...)

}

(...)

}

}

(...)

}

(...)

}

(...)

}
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